Visible to the public Biblio

Filters: Keyword is SMO  [Clear All Filters]
2023-02-03
Sekhar, P. Chandra, Murthy, T. S. N..  2022.  Physical Layer Security using SMO. 2022 International Conference on Computing, Communication and Power Technology (IC3P). :98–102.
Physical Layer Security (PLS) is used to accomplish perfect secure communication between intended network nodes, while the eavesdropper gets zero information. In this paper, a smart antenna technology i.e., Massive multiple-input-multiple-output (mMIMO) and Non-Orthogonal Multiple Access (NOMA) technology is being used to enhance the secrecy performance of a 5G communication network. Small scale Rayleigh fading channels, as well as large scale pathway loss, have to be taken into consideration. An eavesdropper with multiple antennas, an amplify-and-forward (AF) relay with multi antenna has been proposed. Spider Monkey Algorithm (SMO) is used in adding Artificial Noise (AN) for refining secrecy rate. The findings revealed that the suggested technique improves the security and the quality of Wireless communication.
2019-06-24
Sethi, Kamalakanta, Chaudhary, Shankar Kumar, Tripathy, Bata Krishan, Bera, Padmalochan.  2018.  A Novel Malware Analysis Framework for Malware Detection and Classification Using Machine Learning Approach. Proceedings of the 19th International Conference on Distributed Computing and Networking. :49:1–49:4.

Nowadays, the digitization of the world is under a serious threat due to the emergence of various new and complex malware every day. Due to this, the traditional signature-based methods for detection of malware effectively become an obsolete method. The efficiency of the machine learning techniques in context to the detection of malwares has been proved by state-of-the-art research works. In this paper, we have proposed a framework to detect and classify different files (e.g., exe, pdf, php, etc.) as benign and malicious using two level classifier namely, Macro (for detection of malware) and Micro (for classification of malware files as a Trojan, Spyware, Ad-ware, etc.). Our solution uses Cuckoo Sandbox for generating static and dynamic analysis report by executing the sample files in the virtual environment. In addition, a novel feature extraction module has been developed which functions based on static, behavioral and network analysis using the reports generated by the Cuckoo Sandbox. Weka Framework is used to develop machine learning models by using training datasets. The experimental results using the proposed framework shows high detection rate and high classification rate using different machine learning algorithms

2018-06-20
Sethi, Kamalakanta, Chaudhary, Shankar Kumar, Tripathy, Bata Krishan, Bera, Padmalochan.  2017.  A Novel Malware Analysis for Malware Detection and Classification Using Machine Learning Algorithms. Proceedings of the 10th International Conference on Security of Information and Networks. :107–113.

Nowadays, Malware has become a serious threat to the digitization of the world due to the emergence of various new and complex malware every day. Due to this, the traditional signature-based methods for detection of malware effectively becomes an obsolete method. The efficiency of the machine learning model in context to the detection of malware files has been proved by different researches and studies. In this paper, a framework has been developed to detect and classify different files (e.g exe, pdf, php, etc.) as benign and malicious using two level classifier namely, Macro (for detection of malware) and Micro (for classification of malware files as a Trojan, Spyware, Adware, etc.). Cuckoo Sandbox is used for generating static and dynamic analysis report by executing files in the virtual environment. In addition, a novel model is developed for extracting features based on static, behavioral and network analysis using analysis report generated by the Cuckoo Sandbox. Weka Framework is used to develop machine learning models by using training datasets. The experimental results using proposed framework shows high detection rate with an accuracy of 100% using J48 Decision tree model, 99% using SMO (Sequential Minimal Optimization) and 97% using Random Forest tree. It also shows effective classification rate with accuracy 100% using J48 Decision tree, 91% using SMO and 66% using Random Forest tree. These results are used for detecting and classifying unknown files as benign or malicious.