Visible to the public Biblio

Filters: Keyword is malware images  [Clear All Filters]
2021-09-21
Jin, Xiang, Xing, Xiaofei, Elahi, Haroon, Wang, Guojun, Jiang, Hai.  2020.  A Malware Detection Approach Using Malware Images and Autoencoders. 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :1–6.
Most machine learning-based malware detection systems use various supervised learning methods to classify different instances of software as benign or malicious. This approach provides no information regarding the behavioral characteristics of malware. It also requires a large amount of training data and is prone to labeling difficulties and can reduce accuracy due to redundant training data. Therefore, we propose a malware detection method based on deep learning, which uses malware images and a set of autoencoders to detect malware. The method is to design an autoencoder to learn the functional characteristics of malware, and then to observe the reconstruction error of autoencoder to realize the classification and detection of malware and benign software. The proposed approach achieves 93% accuracy and comparatively better F1-score values while detecting malware and needs little training data when compared with traditional malware detection systems.
2020-10-29
Roseline, S. Abijah, Sasisri, A. D., Geetha, S., Balasubramanian, C..  2019.  Towards Efficient Malware Detection and Classification using Multilayered Random Forest Ensemble Technique. 2019 International Carnahan Conference on Security Technology (ICCST). :1—6.

The exponential growth rate of malware causes significant security concern in this digital era to computer users, private and government organizations. Traditional malware detection methods employ static and dynamic analysis, which are ineffective in identifying unknown malware. Malware authors develop new malware by using polymorphic and evasion techniques on existing malware and escape detection. Newly arriving malware are variants of existing malware and their patterns can be analyzed using the vision-based method. Malware patterns are visualized as images and their features are characterized. The alternative generation of class vectors and feature vectors using ensemble forests in multiple sequential layers is performed for classifying malware. This paper proposes a hybrid stacked multilayered ensembling approach which is robust and efficient than deep learning models. The proposed model outperforms the machine learning and deep learning models with an accuracy of 98.91%. The proposed system works well for small-scale and large-scale data since its adaptive nature of setting parameters (number of sequential levels) automatically. It is computationally efficient in terms of resources and time. The method uses very fewer hyper-parameters compared to deep neural networks.

2019-06-10
Kargaard, J., Drange, T., Kor, A., Twafik, H., Butterfield, E..  2018.  Defending IT Systems against Intelligent Malware. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). :411-417.

The increasing amount of malware variants seen in the wild is causing problems for Antivirus Software vendors, unable to keep up by creating signatures for each. The methods used to develop a signature, static and dynamic analysis, have various limitations. Machine learning has been used by Antivirus vendors to detect malware based on the information gathered from the analysis process. However, adversarial examples can cause machine learning algorithms to miss-classify new data. In this paper we describe a method for malware analysis by converting malware binaries to images and then preparing those images for training within a Generative Adversarial Network. These unsupervised deep neural networks are not susceptible to adversarial examples. The conversion to images from malware binaries should be faster than using dynamic analysis and it would still be possible to link malware families together. Using the Generative Adversarial Network, malware detection could be much more effective and reliable.

Kornish, D., Geary, J., Sansing, V., Ezekiel, S., Pearlstein, L., Njilla, L..  2018.  Malware Classification Using Deep Convolutional Neural Networks. 2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). :1-6.

In recent years, deep convolution neural networks (DCNNs) have won many contests in machine learning, object detection, and pattern recognition. Furthermore, deep learning techniques achieved exceptional performance in image classification, reaching accuracy levels beyond human capability. Malware variants from similar categories often contain similarities due to code reuse. Converting malware samples into images can cause these patterns to manifest as image features, which can be exploited for DCNN classification. Techniques for converting malware binaries into images for visualization and classification have been reported in the literature, and while these methods do reach a high level of classification accuracy on training datasets, they tend to be vulnerable to overfitting and perform poorly on previously unseen samples. In this paper, we explore and document a variety of techniques for representing malware binaries as images with the goal of discovering a format best suited for deep learning. We implement a database for malware binaries from several families, stored in hexadecimal format. These malware samples are converted into images using various approaches and are used to train a neural network to recognize visual patterns in the input and classify malware based on the feature vectors. Each image type is assessed using a variety of learning models, such as transfer learning with existing DCNN architectures and feature extraction for support vector machine classifier training. Each technique is evaluated in terms of classification accuracy, result consistency, and time per trial. Our preliminary results indicate that improved image representation has the potential to enable more effective classification of new malware.

2018-06-20
Luo, J. S., Lo, D. C. T..  2017.  Binary malware image classification using machine learning with local binary pattern. 2017 IEEE International Conference on Big Data (Big Data). :4664–4667.

Malware classification is a critical part in the cyber-security. Traditional methodologies for the malware classification typically use static analysis and dynamic analysis to identify malware. In this paper, a malware classification methodology based on its binary image and extracting local binary pattern (LBP) features is proposed. First, malware images are reorganized into 3 by 3 grids which is mainly used to extract LBP feature. Second, the LBP is implemented on the malware images to extract features in that it is useful in pattern or texture classification. Finally, Tensorflow, a library for machine learning, is applied to classify malware images with the LBP feature. Performance comparison results among different classifiers with different image descriptors such as GIST, a spatial envelop, and the LBP demonstrate that our proposed approach outperforms others.