Visible to the public Biblio

Filters: Keyword is software performance  [Clear All Filters]
2021-03-15
Brauckmann, A., Goens, A., Castrillon, J..  2020.  ComPy-Learn: A toolbox for exploring machine learning representations for compilers. 2020 Forum for Specification and Design Languages (FDL). :1–4.
Deep Learning methods have not only shown to improve software performance in compiler heuristics, but also e.g. to improve security in vulnerability prediction or to boost developer productivity in software engineering tools. A key to the success of such methods across these use cases is the expressiveness of the representation used to abstract from the program code. Recent work has shown that different such representations have unique advantages in terms of performance. However, determining the best-performing one for a given task is often not obvious and requires empirical evaluation. Therefore, we present ComPy-Learn, a toolbox for conveniently defining, extracting, and exploring representations of program code. With syntax-level language information from the Clang compiler frontend and low-level information from the LLVM compiler backend, the tool supports the construction of linear and graph representations and enables an efficient search for the best-performing representation and model for tasks on program code.
2021-02-03
Clark, D. J., Turnbull, B..  2020.  Experiment Design for Complex Immersive Visualisation. 2020 Military Communications and Information Systems Conference (MilCIS). :1—5.

Experimentation focused on assessing the value of complex visualisation approaches when compared with alternative methods for data analysis is challenging. The interaction between participant prior knowledge and experience, a diverse range of experimental or real-world data sets and a dynamic interaction with the display system presents challenges when seeking timely, affordable and statistically relevant experimentation results. This paper outlines a hybrid approach proposed for experimentation with complex interactive data analysis tools, specifically for computer network traffic analysis. The approach involves a structured survey completed after free engagement with the software platform by expert participants. The survey captures objective and subjective data points relating to the experience with the goal of making an assessment of software performance which is supported by statistically significant experimental results. This work is particularly applicable to field of network analysis for cyber security and also military cyber operations and intelligence data analysis.

2018-07-18
Düllmann, Thomas F., van Hoorn, André.  2017.  Model-driven Generation of Microservice Architectures for Benchmarking Performance and Resilience Engineering Approaches. Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion. :171–172.

Microservice architectures are steadily gaining adoption in industrial practice. At the same time, performance and resilience are important properties that need to be ensured. Even though approaches for performance and resilience have been developed (e.g., for anomaly detection and fault tolerance), there are no benchmarking environments for their evaluation under controlled conditions. In this paper, we propose a generative platform for benchmarking performance and resilience engineering approaches in microservice architectures, comprising an underlying metamodel, a generation platform, and supporting services for workload generation, problem injection, and monitoring.