Visible to the public Biblio

Filters: Keyword is ElGamal cryptosystem  [Clear All Filters]
2021-03-22
Yakymenko, I., Kasianchuk, M., Gomotiuk, O., Tereshchuk, G., Ivasiev, S., Basistyi, P..  2020.  Elgamal cryptoalgorithm on the basis of the vector-module method of modular exponentiation and multiplication. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :926–929.
This paper presents the implementation of the ELGamal cryptoalgorithm for information flows encryption / decryption, which is based on the application of the vector-modular method of modular exponentiation and multiplication. This allows us to replace the complex operation of the modular exponentiation with multiplication and the last one with addition that increases the speed of the cryptosystem. In accordance with this, the application of the vector-modular method allows us to reduce the modular exponentiation and multiplication temporal complexity in comparison with the classical one.
2018-07-18
Soni, Preeti, Ali, Rifaqat, Pal, Arup Kumar.  2017.  A Two-factor Based Remote User Authentication Scheme Using ElGamal Cryptosystem. Proceedings of the ACM Workshop on Internet of Things (IoT) Security: Issues and Innovations. :3:1–3:6.

Remote user authentication is an essential process to provide services securely during accessing on-line applications where its aim is to find out the legitimacy of an user. The traditional password based remote user authentication is quite popular and widely used but such schemes are susceptible to dictionary attack. To enhance the system security, numerous password based remote user authentication schemes using smartcard have been submitted. However, most of the schemes proposed are either computationally expensive or vulnerable to several kinds of known attacks. In this paper, the authors have developed a two factor based remote user authentication scheme using ElGamal cryptosystem. The validity of the proposed scheme is also confirmed through BAN logic. Besides that authors have done security analysis and compared with related schemes which proclaim that the proposed scheme is able to resist against several kinds of known attacks effectively. The proposed scheme is also simulated with AVISPA tool and expected outcome is achieved where it ensures that the scheme is secured against some known attacks. Overall, the presented scheme is suitable, secure and applicable in any real time applications.