Visible to the public Biblio

Filters: Keyword is Infrared  [Clear All Filters]
2023-07-19
Kurz, Sascha, Stillig, Javier, Parspour, Nejila.  2022.  Concept of a Scalable Communication System for Industrial Wireless Power Transfer Modules. 2022 4th Global Power, Energy and Communication Conference (GPECOM). :124—129.
Modular wireless power distribution systems will be commonly used in next generation factories to supply industrial production equipment, in particular automated guided vehicles. This requires the development of a flexible and standardized communication system in between individual Wireless Power Transfer (WPT) modules and production equipment. Therefore, we first derive the requirements for such a system in order to incorporate them in a generic communication concept. This concept focuses on the zero configuration and user-friendly expandability of the system, in which the communication unit is integrated in each WPT module. The paper describes the communication concept and discusses the advantages and disadvantages. The work concludes with an outlook on the practical implementation in a research project.
2018-07-18
Gurulian, Iakovos, Markantonakis, Konstantinos, Akram, Raja Naeem, Mayes, Keith.  2017.  Artificial Ambient Environments for Proximity Critical Applications. Proceedings of the 12th International Conference on Availability, Reliability and Security. :5:1–5:10.

In the field of smartphones a number of proposals suggest that sensing the ambient environment can act as an effective anti-relay mechanism. However, existing literature is not compliant with industry standards (e.g. EMV and ITSO) that require transactions to complete within a certain time-frame (e.g. 500ms in the case of EMV contactless payments). In previous work the generation of an artificial ambient environment (AAE), and especially the use of infrared light as an AAE actuator was shown to have high success rate in relay attacks detection. In this paper we investigate the application of infrared as a relay attack detection technique in various scenarios, namely, contactless transactions (mobile payments, transportation ticketing, and physical access control), and continuous Two-Factor Authentication. Operating requirements and architectures are proposed for each scenario, while taking into account industry imposed performance requirements, where applicable. Protocols for integrating the solution into the aforementioned scenarios are being proposed, and formally verified. The impact on the performance is assessed through practical implementation. Proposed protocols are verified using Scyther, a formal mechanical verification tool. Finally, additional scenarios, in which this technique can be applied to prevent relay or other types of attacks, are discussed.