Biblio
Mobile ad hoc networks (MANETs) are self-configuring, dynamic networks in which nodes are free to move. These nodes are susceptible to various malicious attacks. In this paper, we propose a distributed trust-based security scheme to prevent multiple attacks such as Probe, Denial-of-Service (DoS), Vampire, User-to-Root (U2R) occurring simultaneously. We report above 95% accuracy in data transmission and reception by applying the proposed scheme. The simulation has been carried out using network simulator ns-2 in a AODV routing protocol environment. To the best of the authors' knowledge, this is the first work reporting a distributed trust-based prevention scheme for preventing multiple attacks. We also check the scalability of the technique using variable node densities in the network.
Factoring is an important financial instrument for SMEs to solve liquidity problems, where the invoice is cashed to avoid late buyer payments. Unfortunately, this business model is risky as it relies on human interaction and involved actors (factors in particular) suffer from information asymmetry. One of the risks involved is 'double-financing': the event that an SME extracts funds from multiple factors. To reduce this asymmetry and increase the scalability of this important instrument, we propose a framework, DecReg, based on blockchain technology. We provide the protocols designed for this framework and present performance analysis. This framework will be deployed in practice as of February 2017 in the Netherlands.