Visible to the public Biblio

Filters: Keyword is data resources  [Clear All Filters]
2020-02-17
Chowdhury, Mohammad Jabed Morshed, Colman, Alan, Kabir, Muhammad Ashad, Han, Jun, Sarda, Paul.  2019.  Continuous Authorization in Subject-Driven Data Sharing Using Wearable Devices. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :327–333.
Sharing personal data with other people or organizations over the web has become a common phenomena of our modern life. This type of sharing is usually managed by access control mechanisms that include access control model and policies. However, these models are designed from the organizational perspective and do not provide sufficient flexibility and control to the individuals. Therefore, individuals often cannot control sharing of their personal data based on their personal context. In addition, the existing context-aware access control models usually check contextual condition once at the beginning of the access and do not evaluate the context during an on-going access. Moreover, individuals do not have control to define how often they want to evaluate the context condition for an ongoing access. Wearable devices such as Fitbit and Apple Smart Watch have recently become increasingly popular. This has made it possible to gather an individual's real-time contextual information (e.g., location, blood-pressure etc.) which can be used to enforce continuous authorization to the individual's data resources. In this paper, we introduce a novel data sharing policy model for continuous authorization in subject-driven data sharing. A software prototype has been implemented employing a wearable device to demonstrate continuous authorization. Our continuous authorization framework provides more control to the individuals by enabling revocation of on-going access to shared data if the specified context condition becomes invalid.
2018-08-23
Yue, L., Junqin, H., Shengzhi, Q., Ruijin, W..  2017.  Big Data Model of Security Sharing Based on Blockchain. 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM). :117–121.

The rise of big data age in the Internet has led to the explosive growth of data size. However, trust issue has become the biggest problem of big data, leading to the difficulty in data safe circulation and industry development. The blockchain technology provides a new solution to this problem by combining non-tampering, traceable features with smart contracts that automatically execute default instructions. In this paper, we present a credible big data sharing model based on blockchain technology and smart contract to ensure the safe circulation of data resources.