Biblio
To promote InGaP solar cell efficiency toward the theoretical limit, one promising approach is to incorporate multiple quantum wells (MQWs) into the InGaP host and improve its open-circuit voltage by facilitating radiative carrier recombination owing to carrier confinement. In this research, we demonstrate numerically that a strain-balanced (SB) In1-xGaxP/In1-yGayP MQW enhances confined carrier density while degrades the effective carrier mobility. However, a smart design of the MQW structure is possible by considering quantitatively the trade-off between carrier confinement effect and carrier transport, and MQW can be advantageous over the InGaP bulk material for boosting photovoltaic efficiency.
We demonstrate high-speed operation of ultracompact electroabsorption modulators based on epsilon-near-zero confinement in indium oxide (In$_\textrm2$$_\textrm3$\$) on silicon using field-effect carrier density tuning. Additionally, we discuss strategies to enhance modulator performance and reduce confinement-related losses by introducing high-mobility conducting oxides such as cadmium oxide (CdO).