Biblio
The Internet of Things (IoT) envisions a huge number of networked sensors connected to the internet. These sensors collect large streams of data which serve as input to wide range of IoT applications and services such as e-health, e-commerce, and automotive services. Complex Event Processing (CEP) is a powerful tool that transforms streams of raw sensor data into meaningful information required by these IoT services. Often these streams of data collected by sensors carry privacy-sensitive information about the user. Thus, protecting privacy is of paramount importance in IoT services based on CEP. In this paper we present a novel pattern-level access control mechanism for CEP based services that conceals private information while minimizing the impact on useful non-sensitive information required by the services to provide a certain quality of service (QoS). The idea is to reorder events from the event stream to conceal privacy-sensitive event patterns while preserving non-privacy sensitive event patterns to maximize QoS. We propose two approaches, namely an ILP-based approach and a graph-based approach, calculating an optimal reordering of events. Our evaluation results show that these approaches are effective in concealing private patterns without significant loss of QoS.
In recent years the use of wireless ad hoc networks has seen an increase of applications. A big part of the research has focused on Mobile Ad Hoc Networks (MAnETs), due to its implementations in vehicular networks, battlefield communications, among others. These peer-to-peer networks usually test novel communications protocols, but leave out the network security part. A wide range of attacks can happen as in wired networks, some of them being more damaging in MANETs. Because of the characteristics of these networks, conventional methods for detection of attack traffic are ineffective. Intrusion Detection Systems (IDSs) are constructed on various detection techniques, but one of the most important is anomaly detection. IDSs based only in past attacks signatures are less effective, even more if these IDSs are centralized. Our work focuses on adding a novel Machine Learning technique to the detection engine, which recognizes attack traffic in an online way (not to store and analyze after), re-writing IDS rules on the fly. Experiments were done using the Dockemu emulation tool with Linux Containers, IPv6 and OLSR as routing protocol, leading to promising results.
The connection of automotive systems with other systems such as road-side units, other vehicles, and various servers in the Internet opens up new ways for attackers to remotely access safety relevant subsystems within connected cars. The security of connected cars and the whole vehicular ecosystem is thus of utmost importance for consumer trust and acceptance of this emerging technology. This paper describes an approach for on-board detection of unanticipated sequences of events in order to identify suspicious activities. The results show that this approach is fast enough for in-vehicle application at runtime. Several behavior models and synchronization strategies are analyzed in order to narrow down suspicious sequences of events to be sent in a privacy respecting way to a global security operations center for further in-depth analysis.
Complex event processing has become an important technology for big data and intelligent computing because it facilitates the creation of actionable, situational knowledge from potentially large amount events in soft realtime. Complex event processing can be instrumental for many mission-critical applications, such as business intelligence, algorithmic stock trading, and intrusion detection. Hence, the servers that carry out complex event processing must be made trustworthy. In this paper, we present a threat analysis on complex event processing systems and describe a set of mechanisms that can be used to control various threats. By exploiting the application semantics for typical event processing operations, we are able to design lightweight mechanisms that incur minimum runtime overhead appropriate for soft realtime computing.