Biblio
Aggregate Computing is a promising paradigm for coordinating large numbers of possibly situated devices, typical of scenarios related to the Internet of Things, smart cities, drone coordination, and mass urban events. Currently, little work has been devoted to study and improve security in aggregate programs, and existing works focus solely on application-level countermeasures. Those security systems work under the assumption that the underlying computational model is respected; however, so-called Byzantine behaviour violates such assumption. In this paper, we discuss how Byzantine behaviours can hinder an aggregate program, and exploit application-level protection for creating bigger disruption. We discuss how the blockchain technology can mitigate these attacks by enforcing behaviours consistent with the expected operational semantics, with no impact on the application logic.
The performance, dependability, and security of cloud service systems are vital for the ongoing operation, control, and support. Thus, controlled improvement in service requires a comprehensive analysis and systematic identification of the fundamental underlying constituents of cloud using a rigorous discipline. In this paper, we introduce a framework which helps identifying areas for potential cloud service enhancements. A cloud service cannot be completed if there is a failure in any of its underlying resources. In addition, resources are kept offline for scheduled maintenance. We use redundant resources to mitigate the impact of failures/maintenance for ensuring performance and dependability; which helps enhancing security as well. For example, at least 4 replicas are required to defend the intrusion of a single instance or a single malicious attack/fault as defined by Byzantine Fault Tolerance (BFT). Data centers with high performance, dependability, and security are outsourced to the cloud computing environment with greater flexibility of cost of owing the computing infrastructure. In this paper, we analyze the effectiveness of redundant resource usage in terms of dependability metric and cost of service deployment based on the priority of service requests. The trade-off among dependability, cost, and security under different redundancy schemes are characterized through the comprehensive analytical models.
Consensus is a fundamental approach to implementing fault-tolerant services through replication. It is well known that there exists a tradeoff between the cost and the resilience. For instance, Crash Fault Tolerant (CFT) protocols have a low cost but can only handle crash failures while Byzantine Fault Tolerant (BFT) protocols handle arbitrary failures but have a higher cost. Hybrid protocols enjoy the benefits of both high performance without failures and high resiliency under failures by switching among different subprotocols. However, it is challenging to determine which subprotocols should be used. We propose a moving target approach to switch among protocols according to the existing system and network vulnerability. At the core of our approach is a formalized cost model that evaluates the vulnerability and performance of consensus protocols based on real-time Intrusion Detection System (IDS) signals. Based on the evaluation results, we demonstrate that a safe, cheap, and unpredictable protocol is always used and a high IDS error rate can be tolerated.
Complex event processing has become an important technology for big data and intelligent computing because it facilitates the creation of actionable, situational knowledge from potentially large amount events in soft realtime. Complex event processing can be instrumental for many mission-critical applications, such as business intelligence, algorithmic stock trading, and intrusion detection. Hence, the servers that carry out complex event processing must be made trustworthy. In this paper, we present a threat analysis on complex event processing systems and describe a set of mechanisms that can be used to control various threats. By exploiting the application semantics for typical event processing operations, we are able to design lightweight mechanisms that incur minimum runtime overhead appropriate for soft realtime computing.