Visible to the public Biblio

Filters: Keyword is Frequency synchronization  [Clear All Filters]
2020-12-11
Li, J., Liu, H., Wu, J., Zhu, J., Huifeng, Y., Rui, X..  2019.  Research on Nonlinear Frequency Hopping Communication Under Big Data. 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). :349—354.

Aiming at the problems of poor stability and low accuracy of current communication data informatization processing methods, this paper proposes a research on nonlinear frequency hopping communication data informatization under the framework of big data security evaluation. By adding a frequency hopping mediation module to the frequency hopping communication safety evaluation framework, the communication interference information is discretely processed, and the data parameters of the nonlinear frequency hopping communication data are corrected and converted by combining a fast clustering analysis algorithm, so that the informatization processing of the nonlinear frequency hopping communication data under the big data safety evaluation framework is completed. Finally, experiments prove that the research on data informatization of nonlinear frequency hopping communication under the framework of big data security evaluation could effectively improve the accuracy and stability.

2019-03-15
Kostyria, O., Storozhenko, V., Naumenko, V., Romanov, Y..  2018.  Mathematical Models of Blocks for Compensation Multipath Distortion in Spatially Separated Passive Time-Frequency Synchronization Radio System. 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S T). :104-108.

Multipath propagation of radio waves negatively affects to the performance of telecommunications and radio navigation systems. When performing time and frequency synchronization tasks of spatially separated standards, the multipath signal propagation aggravates the probability of a correct synchronization and introduces an error. The presence of a multipath signal reduces the signal-to-noise ratio in the received signal, which in turn causes an increase in the synchronization error. If the time delay of the additional beam (s) is less than the useful signal duration, the reception of the useful signal is further complicated by the presence of a partially correlated interference, the level and correlation degree of which increases with decreasing time delay of the interference signals. The article considers with the method of multi-path interference compensation in a multi-position (telecommunication or radio navigation system) or a time and frequency synchronization system for the case if at least one of the receiving positions has no noise signal or does not exceed the permissible level. The essence of the method is that the interference-free useful signal is transmitted to other points in order to pick out the interference component from the signal / noise mix. As a result, an interference-free signal is used for further processing. The mathematical models of multipath interference suppressors in the temporal and in the frequency domain are presented in the article. Compared to time processing, processing in the frequency domain reduces computational costs. The operation of the suppressor in the time domain has been verified experimentally.

2018-09-05
Zhong, Q., Blaabjerg, F., Cecati, C..  2017.  Power-Electronics-Enabled Autonomous Power Systems. IEEE Transactions on Industrial Electronics. 64:5904–5906.

The eleven papers in this special section focus on power electronics-enabled autonomous systems. Power systems are going through a paradigm change from centralized generation to distributed generation and further onto smart grid. Millions of relatively small distributed energy resources (DER), including wind turbines, solar panels, electric vehicles and energy storage systems, and flexible loads are being integrated into power systems through power electronic converters. This imposes great challenges to the stability, scalability, reliability, security, and resiliency of future power systems. This section joins the forces of the communities of control/systems theory, power electronics, and power systems to address various emerging issues of power-electronics-enabled autonomous power systems, paving the way for large-scale deployment of DERs and flexible loads.