Visible to the public Biblio

Filters: Keyword is Special issues and sections  [Clear All Filters]
2022-04-21
Franze, Giuseppe, Fortino, Giancarlo, Cao, Xianghui, Sarne, Giuseppe Maria Luigi, Song, Zhen.  2020.  Resilient control in large-scale networked cyber-physical systems: Guest editorial. IEEE/CAA Journal of Automatica Sinica. 7:1201–1203.
The papers in this special section focus on resilient control in large-scae networked cyber-physical systems. These papers deal with the opportunities offered by these emerging technologies to mitigate undesired phenomena arising when intentional jamming and false data injections, categorized as cyber-attacks, infer communication channels. Recent advances in sensing, communication and computing have open the door to the deployment of largescale networks of sensors and actuators that allow fine-grain monitoring and control of a multitude of physical processes and infrastructures. The appellation used by field experts for these paradigms is Cyber-Physical Systems (CPS) because the dynamics among computers, networking media/resources and physical systems interact in a way that multi-disciplinary technologies (embedded systems, computers, communications and controls) are required to accomplish prescribed missions. Moreover, they are expected to play a significant role in the design and development of future engineering applications such as smart grids, transportation systems, nuclear plants and smart factories.
Conference Name: IEEE/CAA Journal of Automatica Sinica
2021-09-17
Cheng, Xiuzhen, Chellappan, Sriram, Cheng, Wei, Sahin, Gokhan.  2020.  Guest Editorial Introduction to the Special Section on Network Science for High-Confidence Cyber-Physical Systems. IEEE Transactions on Network Science and Engineering. 7:764–765.
The papers in this special section focus on network science for high confidence cyber-physical systems (CPS) Here CPS refers to the engineered systems that can seamlessly integrate the physical world with the cyber world via advanced computation and communication capabilities. To enable high-confidence CPS for achieving better benefits as well as supporting emerging applications, network science-based theories and methodologies are needed to cope with the ever-growing complexity of smart CPS, to predict the system behaviors, and to model the deep inter-dependencies among CPS and the natural world. The major objective of this special section is to exploit various network science techniques such as modeling, analysis, mining, visualization, and optimization to advance the science of supporting high-confidence CPS for greater assurances of security, safety, scalability, efficiency, and reliability. These papers bring a timely and important research topic. The challenges and opportunities of applying network science approaches to high-confidence CPS are profound and far-reaching.
Conference Name: IEEE Transactions on Network Science and Engineering
2020-12-01
Kalyanaraman, A., Halappanavar, M..  2018.  Guest Editorial: Advances in Parallel Graph Processing: Algorithms, Architectures, and Application Frameworks. IEEE Transactions on Multi-Scale Computing Systems. 4:188—189.

The papers in this special section explore recent advancements in parallel graph processing. In the sphere of modern data science and data-driven applications, graph algorithms have achieved a pivotal place in advancing the state of scientific discovery and knowledge. Nearly three centuries of ideas have made graph theory and its applications a mature area in computational sciences. Yet, today we find ourselves at a crossroads between theory and application. Spurred by the digital revolution, data from a diverse range of high throughput channels and devices, from across internet-scale applications, are starting to mark a new era in data-driven computing and discovery. Building robust graph models and implementing scalable graph application frameworks in the context of this new era are proving to be significant challenges. Concomitant to the digital revolution, we have also experienced an explosion in computing architectures, with a broad range of multicores, manycores, heterogeneous platforms, and hardware accelerators (CPUs, GPUs) being actively developed and deployed within servers and multinode clusters. Recent advances have started to show that in more than one way, these two fields—graph theory and architectures–are capable of benefiting and in fact spurring new research directions in one another. This special section is aimed at introducing some of the new avenues of cutting-edge research happening at the intersection of graph algorithm design and their implementation on advanced parallel architectures.

2020-11-30
Blake, M. Brian, Helal, A., Mei, H..  2019.  Guest Editor's Introduction: Special Section on Services and Software Engineering Towards Internetware. IEEE Transactions on Services Computing. 12:4–5.
The six papers in this special section focuses on services and software computing. Services computing provides a foundation to build software systems and applications over the Internet as well as emerging hybrid networked platforms motivated by it. Due to the open, dynamic, and evolving nature of the Internet, new features were born with these Internet-scale and service-based software systems. Such systems should be situation- aware, adaptable, and able to evolve to effectively deal with rapid changes of user requirements and runtime contexts. These emerging software systems enable and require novel methods in conducting software requirement, design, deployment, operation, and maintenance beyond existing services computing technologies. New programming and lifecycle paradigms accommodating such Internet- scale and service-based software systems, referred to as Internetware, are inevitable. The goal of this special section is to present the innovative solutions and challenging technical issues, so as to explore various potential pathways towards Internet-scale and service-based software systems.
2018-09-05
Zhong, Q., Blaabjerg, F., Cecati, C..  2017.  Power-Electronics-Enabled Autonomous Power Systems. IEEE Transactions on Industrial Electronics. 64:5904–5906.

The eleven papers in this special section focus on power electronics-enabled autonomous systems. Power systems are going through a paradigm change from centralized generation to distributed generation and further onto smart grid. Millions of relatively small distributed energy resources (DER), including wind turbines, solar panels, electric vehicles and energy storage systems, and flexible loads are being integrated into power systems through power electronic converters. This imposes great challenges to the stability, scalability, reliability, security, and resiliency of future power systems. This section joins the forces of the communities of control/systems theory, power electronics, and power systems to address various emerging issues of power-electronics-enabled autonomous power systems, paving the way for large-scale deployment of DERs and flexible loads.