Biblio
Intentional interference presents a major threat to the operation of the Global Navigation Satellite Systems. Adaptive notch filtering provides an excellent countermeasure and deterrence against narrowband interference. This paper presents a comparative performance analysis of two adaptive notch filtering algorithms for GPS specific applications which are based on Direct form Second Order and Lattice-Based notch filter structures. Performance of each algorithm is evaluated considering the ratio of jamming to noise density against the effective signal to noise ratio at the output of the correlator. A fully adaptive lattice notch filter is proposed, which is able to simultaneously adapt its coefficients to alter the notch frequency along with the bandwidth of the notch filter. The filter demonstrated a superior tracking performance and convergence rate in comparison to an existing algorithm taken from the literature. Moreover, this paper describes the complete GPS modelling platform implemented in Simulink too.
Conducted emission of motors is a domain of interest for EMC as it may introduce disturbances in the system in which they are integrated. Nevertheless few publications deal with the susceptibility of motors, and especially, servomotors despite this devices are more and more used in automated production lines as well as for robotics. Recent papers have been released devoted to the possibility of compromising such systems by cyber-attacks. One could imagine the use of smart intentional electromagnetic interference to modify their behavior or damage them leading in the modification of the industrial process. This paper aims to identify the disturbances that may affect the behavior of a Commercial Off-The-Shelf servomotor when exposed to an electromagnetic field and the criticality of the effects with regards to its application. Experiments have shown that a train of radio frequency pulses may induce an erroneous reading of the position value of the servomotor and modify in an unpredictable way the movement of the motor's axis.