Visible to the public Biblio

Filters: Keyword is JonDonym  [Clear All Filters]
2022-04-12
K M, Akshobhya.  2021.  Machine learning for anonymous traffic detection and classification. 2021 11th International Conference on Cloud Computing, Data Science Engineering (Confluence). :942—947.
Anonymity is one of the biggest concerns in web security and traffic management. Though web users are concerned about privacy and security various methods are being adopted in making the web more vulnerable. Browsing the web anonymously not only threatens the integrity but also questions the motive of such activity. It is important to classify the network traffic and prevent source and destination from hiding with each other unless it is for benign activity. The paper proposes various methods to classify the dark web at different levels or hierarchies. Various preprocessing techniques are proposed for feature selection and dimensionality reduction. Anon17 dataset is used for training and testing the model. Three levels of classification are proposed in the paper based on the network, traffic type, and application.
2019-01-31
Shahbar, K., Zincir-Heywood, A. N..  2018.  How Far Can We Push Flow Analysis to Identify Encrypted Anonymity Network Traffic? NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–6.

Anonymity networks provide privacy to the users by relaying their data to multiple destinations in order to reach the final destination anonymously. Multilayer of encryption is used to protect the users' privacy from attacks or even from the operators of the stations. In this research, we showed how flow analysis could be used to identify encrypted anonymity network traffic under four scenarios: (i) Identifying anonymity networks compared to normal background traffic; (ii) Identifying the type of applications used on the anonymity networks; (iii) Identifying traffic flow behaviors of the anonymity network users; and (iv) Identifying / profiling the users on an anonymity network based on the traffic flow behavior. In order to study these, we employ a machine learning based flow analysis approach and explore how far we can push such an approach.

2018-09-12
Montieri, A., Ciuonzo, D., Aceto, G., Pescape, A..  2017.  Anonymity Services Tor, I2P, JonDonym: Classifying in the Dark. 2017 29th International Teletraffic Congress (ITC 29). 1:81–89.

Traffic classification, i.e. associating network traffic to the application that generated it, is an important tool for several tasks, spanning on different fields (security, management, traffic engineering, R&D). This process is challenged by applications that preserve Internet users' privacy by encrypting the communication content, and even more by anonymity tools, additionally hiding the source, the destination, and the nature of the communication. In this paper, leveraging a public dataset released in 2017, we provide (repeatable) classification results with the aim of investigating to what degree the specific anonymity tool (and the traffic it hides) can be identified, when compared to the traffic of the other considered anonymity tools, using machine learning approaches based on the sole statistical features. To this end, four classifiers are trained and tested on the dataset: (i) Naïve Bayes, (ii) Bayesian Network, (iii) C4.5, and (iv) Random Forest. Results show that the three considered anonymity networks (Tor, I2P, JonDonym) can be easily distinguished (with an accuracy of 99.99%), telling even the specific application generating the traffic (with an accuracy of 98.00%).