Visible to the public Biblio

Filters: Keyword is users privacy  [Clear All Filters]
2020-07-13
Mahmood, Shah.  2019.  The Anti-Data-Mining (ADM) Framework - Better Privacy on Online Social Networks and Beyond. 2019 IEEE International Conference on Big Data (Big Data). :5780–5788.
The unprecedented and enormous growth of cloud computing, especially online social networks, has resulted in numerous incidents of the loss of users' privacy. In this paper, we provide a framework, based on our anti-data-mining (ADM) principle, to enhance users' privacy against adversaries including: online social networks; search engines; financial terminal providers; ad networks; eavesdropping governments; and other parties who can monitor users' content from the point where the content leaves users' computers to within the data centers of these information accumulators. To achieve this goal, our framework proactively uses the principles of suppression of sensitive data and disinformation. Moreover, we use social-bots in a novel way for enhanced privacy and provide users' with plausible deniability for their photos, audio, and video content uploaded online.
2018-09-12
Montieri, A., Ciuonzo, D., Aceto, G., Pescape, A..  2017.  Anonymity Services Tor, I2P, JonDonym: Classifying in the Dark. 2017 29th International Teletraffic Congress (ITC 29). 1:81–89.

Traffic classification, i.e. associating network traffic to the application that generated it, is an important tool for several tasks, spanning on different fields (security, management, traffic engineering, R&D). This process is challenged by applications that preserve Internet users' privacy by encrypting the communication content, and even more by anonymity tools, additionally hiding the source, the destination, and the nature of the communication. In this paper, leveraging a public dataset released in 2017, we provide (repeatable) classification results with the aim of investigating to what degree the specific anonymity tool (and the traffic it hides) can be identified, when compared to the traffic of the other considered anonymity tools, using machine learning approaches based on the sole statistical features. To this end, four classifiers are trained and tested on the dataset: (i) Naïve Bayes, (ii) Bayesian Network, (iii) C4.5, and (iv) Random Forest. Results show that the three considered anonymity networks (Tor, I2P, JonDonym) can be easily distinguished (with an accuracy of 99.99%), telling even the specific application generating the traffic (with an accuracy of 98.00%).