Biblio
The use of risk information can help software engineers identify software components that are likely vulnerable or require extra attention when testing. Some studies have shown that the requirements risk-based approaches can be effective in improving the effectiveness of regression testing techniques. However, the risk estimation processes used in such approaches can be subjective, time-consuming, and costly. In this research, we introduce a fuzzy expert system that emulates human thinking to address the subjectivity related issues in the risk estimation process in a systematic and an efficient way and thus further improve the effectiveness of test case prioritization. Further, the required data for our approach was gathered by employing a semi-automated process that made the risk estimation process less subjective. The empirical results indicate that the new prioritization approach can improve the rate of fault detection over several existing test case prioritization techniques, while reducing threats to subjective risk estimation.
To solve the problems associated with large data volume real-time processing, heterogeneous systems using various computing devices are increasingly used. The characteristic of solving this class of problems is related to the fact that there are two directions for improving methods of real-time data analysis: the first is the development of algorithms and approaches to analysis, and the second is the development of hardware and software. This article reviews the main approaches to the architecture of a hardware-software solution for traffic capture and deep packet inspection (DPI) in data transmission networks with a bandwidth of 80 Gbit/s and higher. At the moment there are software and hardware tools that allow designing the architecture of capture system and deep packet inspection: 1) Using only the central processing unit (CPU); 2) Using only the graphics processing unit (GPU); 3) Using the central processing unit and graphics processing unit simultaneously (CPU + GPU). In this paper, we consider these key approaches. Also attention is paid to both hardware and software requirements for the architecture of solutions. Pain points and remedies are described.