Visible to the public Biblio

Filters: Keyword is uncertain graphs  [Clear All Filters]
2020-05-22
Li, Xiaodong.  2019.  DURS: A Distributed Method for k-Nearest Neighbor Search on Uncertain Graphs. 2019 20th IEEE International Conference on Mobile Data Management (MDM). :377—378.
Large graphs are increasingly prevalent in mobile networks, social networks, traffic networks and biological networks. These graphs are often uncertain, where edges are augmented with probabilities that indicates the chance to exist. Recently k-nearest neighbor search has been studied within the field of uncertain graphs, but the scalability and efficiency issues are not well solved. Moreover, solutions are implemented on a single machine and thus cannot fit large uncertain graphs. In this paper, we develop a framework, called DURS, to distribute k-nearest neighbor search into several machines and re-partition the uncertain graphs to balance the work loads and reduce the communication costs. Evaluation results show that DURS is essential to make the system scalable when answering k-nearest neighbor queries on uncertain graphs.
2018-09-28
Hu, J., Shi, W., Liu, H., Yan, J., Tian, Y., Wu, Z..  2017.  Preserving Friendly-Correlations in Uncertain Graphs Using Differential Privacy. 2017 International Conference on Networking and Network Applications (NaNA). :24–29.

It is a challenging problem to preserve the friendly-correlations between individuals when publishing social-network data. To alleviate this problem, uncertain graph has been presented recently. The main idea of uncertain graph is converting an original graph into an uncertain form, where the correlations between individuals is an associated probability. However, the existing methods of uncertain graph lack rigorous guarantees of privacy and rely on the assumption of adversary's knowledge. In this paper we first introduced a general model for constructing uncertain graphs. Then, we proposed an algorithm under the model which is based on differential privacy and made an analysis of algorithm's privacy. Our algorithm provides rigorous guarantees of privacy and against the background knowledge attack. Finally, the algorithm we proposed satisfied differential privacy and showed feasibility in the experiments. And then, we compare our algorithm with (k, ε)-obfuscation algorithm in terms of data utility, the importance of nodes for network in our algorithm is similar to (k, ε)-obfuscation algorithm.