Visible to the public Biblio

Filters: Keyword is Health Information Systems  [Clear All Filters]
2020-09-28
Fimiani, Gianluca.  2018.  Supporting Privacy in a Cloud-Based Health Information System by Means of Fuzzy Conditional Identity-Based Proxy Re-encryption (FCI-PRE). 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA). :569–572.
Healthcare is traditionally a data-intensive domain, where physicians needs complete and updated anamnesis of their patients to take the best medical decisions. Dematerialization of the medical documents and the consequent health information systems to share electronic health records among healthcare providers are paving the way to an effective solution to this issue. However, they are also paving the way of non-negligible privacy issues that are limiting the full application of these technologies. Encryption is a valuable means to resolve such issues, however the current schemes are not able to cope with all the needs and challenges that the cloud-based sharing of electronic health records imposes. In this work we have investigated the use of a novel scheme where encryption is combined with biometric authentication, and defines a preliminary solution.
2018-10-26
Chaudhry, J., Saleem, K., Islam, R., Selamat, A., Ahmad, M., Valli, C..  2017.  AZSPM: Autonomic Zero-Knowledge Security Provisioning Model for Medical Control Systems in Fog Computing Environments. 2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops). :121–127.

The panic among medical control, information, and device administrators is due to surmounting number of high-profile attacks on healthcare facilities. This hostile situation is going to lead the health informatics industry to cloud-hoarding of medical data, control flows, and site governance. While different healthcare enterprises opt for cloud-based solutions, it is a matter of time when fog computing environment are formed. Because of major gaps in reported techniques for fog security administration for health data i.e. absence of an overarching certification authority (CA), the security provisioning is one of the the issue that we address in this paper. We propose a security provisioning model (AZSPM) for medical devices in fog environments. We propose that the AZSPM can be build by using atomic security components that are dynamically composed. The verification of authenticity of the atomic components, for trust sake, is performed by calculating the processor clock cycles from service execution at the resident hardware platform. This verification is performed in the fully sand boxed environment. The results of the execution cycles are matched with the service specifications from the manufacturer before forwarding the mobile services to the healthcare cloud-lets. The proposed model is completely novel in the fog computing environments. We aim at building the prototype based on this model in a healthcare information system environment.