Visible to the public Biblio

Filters: Keyword is security service  [Clear All Filters]
2021-08-12
Jung, Junyoung, Cho, Jinsung, Lee, Ben.  2020.  A Secure Platform for IoT Devices based on ARM Platform Security Architecture. 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1—4.
Recent IoT services are being used in various fields such as smart homes, smart factories, smart cars and industrial systems. These various IoT services are implemented through hyper-connected IoT devices, and accordingly, security requirements of these devices are being highlighted. In order to satisfy the security requirements of IoT devices, various studies have been conducted such as HSM, Security SoC, and TrustZone. In particular, ARM proposed Platform Security Architecture (PSA), which is a security architecture that provide execution isolation to safely manage and protect the computing resources of low- end IoT devices. PSA can ensure confidentiality and integrity of IoT devices based on its structural features, but conversely, it has the problem of increasing development difficulty in using the security functions of PSA. To solve this problem, this paper analyzes the security requirements of an IoT platform and proposes secure platform based on PSA. To evaluate the proposed secure platform, a PoC implementation is provided based on hardware prototype consisting of FPGA. Our experiments with the PoC implementation verify that the proposed secure platform offers not only high security but also convenience of application development for IoT devices.
2020-08-17
De Oliveira Nunes, Ivan, ElDefrawy, Karim, Rattanavipanon, Norrathep, Tsudik, Gene.  2019.  PURE: Using Verified Remote Attestation to Obtain Proofs of Update, Reset and Erasure in low-End Embedded Systems. 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–8.
Remote Attestation ( RA) is a security service that enables a trusted verifier ( Vrf) to measure current memory state of an untrusted remote prover ( Prv). If correctly implemented, RA allows Vrf to remotely detect if Prv's memory reflects a compromised state. However, RA by itself offers no means of remedying the situation once P rv is determined to be compromised. In this work we show how a secure RA architecture can be extended to enable important and useful security services for low-end embedded devices. In particular, we extend the formally verified RA architecture, VRASED, to implement provably secure software update, erasure, and system-wide resets. When (serially) composed, these features guarantee to Vrf that a remote Prv has been updated to a functional and malware-free state, and was properly initialized after such process. These services are provably secure against an adversary (represented by malware) that compromises Prv and exerts full control of its software state. Our results demonstrate that such services incur minimal additional overhead (0.4% extra hardware footprint, and 100-s milliseconds to generate combined proofs of update, erasure, and reset), making them practical even for the lowest-end embedded devices, e.g., those based on MSP430 or AVR ATMega micro-controller units (MCUs). All changes introduced by our new services to VRASED trusted components are also formally verified.
2020-08-13
Protskaya, Yanina, Veltri, Luca.  2019.  Broker Bridging Mechanism for Providing Anonymity in MQTT. 2019 10th International Conference on Networks of the Future (NoF). :110—113.
With the growth of the number of smart devices the range of fields where they are used is growing too, and it is essential to protect the communication between them. In addition to data integrity and confidentiality, for which standard mechanisms exists, a security service that may also be required is anonymity, allowing entities to communicate with each other in such a way that no third party knows that they are the participants of a certain message exchange. In this paper we propose a mechanism for creating anonymous communications using MQTT protocol. The design of our solution is based on dynamic broker bridging mechanism and allows clients to subscribe and to publish to a topic remaining incognito.
2019-02-13
Dessouky, G., Abera, T., Ibrahim, A., Sadeghi, A..  2018.  LiteHAX: Lightweight Hardware-Assisted Attestation of Program Execution. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–8.

Unlike traditional processors, embedded Internet of Things (IoT) devices lack resources to incorporate protection against modern sophisticated attacks resulting in critical consequences. Remote attestation (RA) is a security service to establish trust in the integrity of a remote device. While conventional RA is static and limited to detecting malicious modification to software binaries at load-time, recent research has made progress towards runtime attestation, such as attesting the control flow of an executing program. However, existing control-flow attestation schemes are inefficient and vulnerable to sophisticated data-oriented programming (DOP) attacks subvert these schemes and keep the control flow of the code intact. In this paper, we present LiteHAX, an efficient hardware-assisted remote attestation scheme for RISC-based embedded devices that enables detecting both control-flow attacks as well as DOP attacks. LiteHAX continuously tracks both the control-flow and data-flow events of a program executing on a remote device and reports them to a trusted verifying party. We implemented and evaluated LiteHAX on a RISC-V System-on-Chip (SoC) and show that it has minimal performance and area overhead.

2019-01-16
Hossain, Mahmud, Karim, Yasser, Hasan, Ragib.  2018.  SecuPAN: A Security Scheme to Mitigate Fragmentation-Based Network Attacks in 6LoWPAN. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :307–318.
6LoWPAN is a widely used protocol for communication over IPV6 Low-power Wireless Personal Area Networks. Unfortunately, the 6LoWPAN packet fragmentation mechanism possesses vulnerabilities that adversaries can exploit to perform network attacks. Lack of fragment authentication, payload integrity verification, and sender IP address validation lead to fabrication, duplication, and impersonation attacks. Moreover, adversaries can abuse the poor reassembly buffer management technique of the 6LoWPAN layer to perform buffer exhaustion and selective forwarding attacks. In this paper, we propose SecuPAN - a security scheme for mitigating fragmentation-based network attacks in 6LoWPAN networks and devices. We propose a Message Authentication Code based per-fragment integrity and authenticity verification scheme to defend against fabrication and duplication attacks. We also present a mechanism for computing datagram-tag and IPv6 address cryptographically to mitigate impersonation attacks. Additionally, our reputation-based buffer management scheme protects 6LoWPAN devices from buffer reservation attacks. We provide an extensive security analysis of SecuPAN to demonstrate that SecuPAN is secure against strong adversarial scenarios. We also implemented a prototype of SecuPAN on Contiki enabled IoT devices and provided a performance analysis of our proposed scheme.
2018-10-26
Imine, Y., Kouicem, D. E., Bouabdallah, A., Ahmed, L..  2018.  MASFOG: An Efficient Mutual Authentication Scheme for Fog Computing Architecture. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :608–613.

Fog computing is a new paradigm which extends cloud computing services into the edge of the network. Indeed, it aims to pool edge resources in order to deal with cloud's shortcomings such as latency problems. However, this proposal does not ensure the honesty and the good behavior of edge devices. Thus, security places itself as an important challenge in front of this new proposal. Authentication is the entry point of any security system, which makes it an important security service. Traditional authentication schemes endure latency issues and some of them do not satisfy fog-computing requirements such as mutual authentication between end devices and fog servers. Thus, new authentication protocols need to be implemented. In this paper, we propose a new efficient authentication scheme for fog computing architecture. Our scheme ensures mutual authentication and remedies to fog servers' misbehaviors. Moreover, fog servers need to hold only a couple of information to verify the authenticity of every user in the system. Thus, it provides a low overhead in terms of storage capacity. Finally, we show through experimentation the efficiency of our scheme.