Visible to the public Biblio

Filters: Keyword is telecommunication network  [Clear All Filters]
2020-02-17
Leite, Leonardo H. M., do Couto Boaventura, Wallace, de Errico, Luciano, Machado Alessi, Pedro.  2019.  Self-Healing in Distribution Grids Supported by Photovoltaic Dispersed Generation in a Voltage Regulation Perspective. 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1–6.
Distributed Generation Photovoltaic Systems -DGPV - connected to the power distribution grid through electronic inverters can contribute, in an aggregate scenario, to the performance of several power system control functions, notably in self-healing and voltage regulation along a distribution feeder. This paper proposes the use of an optimization method for voltage regulation, focused on reactive power injection control, based on a comprehensive architecture model that coordinates multiple photovoltaic distributed sources to support grid reconfiguration after self-healing action. A sensitivity analysis regarding the performance of voltage regulation, based on a co-simulation of PSCAD and MatLab, shows the effectiveness of using dispersed generation sources to assist grid reconfiguration after disturbances caused by severe faults.
2018-10-26
Azad, Muhammad Ajmal, Bag, Samiran.  2017.  Decentralized Privacy-aware Collaborative Filtering of Smart Spammers in a Telecommunication Network. Proceedings of the Symposium on Applied Computing. :1711–1717.

Smart spammers and telemarketers circumvent the standalone spam detection systems by making low rate spam-ming activity to a large number of recipients distributed across many telecommunication operators. The collaboration among multiple telecommunication operators (OPs) will allow operators to get rid of unwanted callers at the early stage of their spamming activity. The challenge in the design of collaborative spam detection system is that OPs are not willing to share certain information about behaviour of their users/customers because of privacy concerns. Ideally, operators agree to share certain aggregated statistical information if collaboration process ensures complete privacy protection of users and their network data. To address this challenge and convince OPs for the collaboration, this paper proposes a decentralized reputation aggregation protocol that enables OPs to take part in a collaboration process without use of a trusted third party centralized system and without developing a predefined trust relationship with other OPs. To this extent, the collaboration among operators is achieved through the exchange of cryptographic reputation scores among OPs thus fully protects relationship network and reputation scores of users even in the presence of colluders. We evaluate the performance of proposed protocol over the simulated data consisting of five collaborators. Experimental results revealed that proposed approach outperforms standalone systems in terms of true positive rate and false positive rate.