Visible to the public Biblio

Filters: Keyword is fake review  [Clear All Filters]
2019-02-18
Hernandez, Nestor, Rahman, Mizanur, Recabarren, Ruben, Carbunar, Bogdan.  2018.  Fraud De-Anonymization for Fun and Profit. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :115–130.
The persistence of search rank fraud in online, peer-opinion systems, made possible by crowdsourcing sites and specialized fraud workers, shows that the current approach of detecting and filtering fraud is inefficient. We introduce a fraud de-anonymization approach to disincentivize search rank fraud: attribute user accounts flagged by fraud detection algorithms in online peer-opinion systems, to the human workers in crowdsourcing sites, who control them. We model fraud de-anonymization as a maximum likelihood estimation problem, and introduce UODA, an unconstrained optimization solution. We develop a graph based deep learning approach to predict ownership of account pairs by the same fraudster and use it to build discriminative fraud de-anonymization (DDA) and pseudonymous fraudster discovery algorithms (PFD). To address the lack of ground truth fraud data and its pernicious impacts on online systems that employ fraud detection, we propose the first cheating-resistant fraud de-anonymization validation protocol, that transforms human fraud workers into ground truth, performance evaluation oracles. In a user study with 16 human fraud workers, UODA achieved a precision of 91%. On ground truth data that we collected starting from other 23 fraud workers, our co-ownership predictor significantly outperformed a state-of-the-art competitor, and enabled DDA and PFD to discover tens of new fraud workers, and attribute thousands of suspicious user accounts to existing and newly discovered fraudsters.
2018-10-26
Yao, Yuanshun, Viswanath, Bimal, Cryan, Jenna, Zheng, Haitao, Zhao, Ben Y..  2017.  Automated Crowdturfing Attacks and Defenses in Online Review Systems. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1143–1158.

Malicious crowdsourcing forums are gaining traction as sources of spreading misinformation online, but are limited by the costs of hiring and managing human workers. In this paper, we identify a new class of attacks that leverage deep learning language models (Recurrent Neural Networks or RNNs) to automate the generation of fake online reviews for products and services. Not only are these attacks cheap and therefore more scalable, but they can control rate of content output to eliminate the signature burstiness that makes crowdsourced campaigns easy to detect. Using Yelp reviews as an example platform, we show how a two phased review generation and customization attack can produce reviews that are indistinguishable by state-of-the-art statistical detectors. We conduct a survey-based user study to show these reviews not only evade human detection, but also score high on "usefulness" metrics by users. Finally, we develop novel automated defenses against these attacks, by leveraging the lossy transformation introduced by the RNN training and generation cycle. We consider countermeasures against our mechanisms, show that they produce unattractive cost-benefit tradeoffs for attackers, and that they can be further curtailed by simple constraints imposed by online service providers.