Biblio
Due to expansion of Internet and huge dataset, many organizations started to use cloud. Cloud Computing moves the application software and databases to the centralized large data centers, where the management of the data and services may not be fully trustworthy. Due to this cloud faces many threats. In this work, we study the problem of ensuring the integrity of data storage in Cloud Computing. To reduce the computational cost at user side during the integrity verification of their data, the notion of public verifiability has been proposed. Our approach is to create a new entity names Cloud Service Controller (CSC) which will help us to reduce the trust on the Third Party Auditor (TPA). We have strengthened the security model by using AES Encryption with SHA-S12 & tag generation. In this paper we get a brief introduction about the file upload phase, integrity of the file & Proof of Retrievability of the file.
In a Semi-autonomic cloud auditing architecture we weaved in privacy enhancing mechanisms [15] by applying the public key version of the Somewhat homomorphic encryption (SHE) scheme from [4]. It turns out that the performance of the SHE can be significantly improved by carefully deriving relevant crypto parameters from the concrete cloud auditing use cases for which the scheme serves as a privacy enhancing approach. We provide a generic algorithm for finding good SHE parameters with respect to a given use case scenario by analyzing and taking into consideration security, correctness and performance of the scheme. Also, to show the relevance of our proposed algorithms we apply it to two predominant cloud auditing use cases.