Visible to the public Biblio

Filters: Keyword is back-bending activities detection  [Clear All Filters]
2018-11-14
Wu, Q., Zhao, W..  2018.  Machine Learning Based Human Activity Detection in a Privacy-Aware Compliance Tracking System. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0673–0676.

In this paper, we report our work on using machine learning techniques to predict back bending activity based on field data acquired in a local nursing home. The data are recorded by a privacy-aware compliance tracking system (PACTS). The objective of PACTS is to detect back-bending activities and issue real-time alerts to the participant when she bends her back excessively, which we hope could help the participant form good habits of using proper body mechanics when performing lifting/pulling tasks. We show that our algorithms can differentiate nursing staffs baseline and high-level bending activities by using human skeleton data without any expert rules.