Visible to the public Biblio

Filters: Keyword is healthcare IoT  [Clear All Filters]
2020-07-20
Nausheen, Farha, Begum, Sayyada Hajera.  2018.  Healthcare IoT: Benefits, vulnerabilities and solutions. 2018 2nd International Conference on Inventive Systems and Control (ICISC). :517–522.
With all the exciting benefits of IoT in healthcare - from mobile applications to wearable and implantable health gadgets-it becomes prominent to ensure that patients, their medical data and the interactions to and from their medical devices are safe and secure. The security and privacy is being breached when the mobile applications are mishandled or tampered by the hackers by performing reverse engineering on the application leading to catastrophic consequences. To combat against these vulnerabilities, there is need to create an awareness of the potential risks of these devices and effective strategies are needed to be implemented to achieve a level of security defense. In this paper, the benefits of healthcare IoT system and the possible vulnerabilities that may result are presented. Also, we propose to develop solutions against these vulnerabilities by protecting mobile applications using obfuscation and return oriented programming techniques. These techniques convert an application into a form which makes difficult for an adversary to interpret or alter the code for illegitimate purpose. The mobile applications use keys to control communication with the implantable medical devices, which need to be protected as they are the critical component for securing communications. Therefore, we also propose access control schemes using white box encryption to make the keys undiscoverable to hackers.
2020-01-21
Joshitta, R. Shantha Mary, Arockiam, L., Malarchelvi, P. D. Sheba Kezia.  2019.  Security Analysis of SAT\_Jo Lightweight Block Cipher for Data Security in Healthcare IoT. Proceedings of the 2019 3rd International Conference on Cloud and Big Data Computing. :111–116.
In this fast moving world, every industry is advanced by a new technological paradigm called Internet of Things (IoT). It offers interconnectivity between the digital and the real world which will swiftly transform the style of doing business. It opens up a wide-ranging new array of dynamic opportunities in all industries and is fuelling innovation in every part of life. Due to the constrained nature of the devices in IoT environment, it is difficult to execute complex data encryption algorithms to enhance the security. Moreover, computation overhead caused by the existing cryptographic security algorithms is heavy and has to be minimized. To overcome these challenges, this paper presents the security analysis of the lightweight block cipher SAT\_Jo to ensure the data security in healthcare Internet of Things. It is based on SPN structure and runs for 31 rounds. It encrypts 64-bits of block length with key of 80 bits. Cadence NC-Verilog 5.1 is used for simulation and Cadence Encounter RTL Compiler v10.1 for synthesis. The implementations are synthesized for UMC 90 nm low-leakage Faraday library from technology libraries. Moreover, the proposed SAT\_Jo block cipher withstands in various attacks such as differential attack, linear attack and algebraic attack in healthcare IoT environment.
2018-11-14
Alagar, V., Alsaig, A., Ormandjiva, O., Wan, K..  2018.  Context-Based Security and Privacy for Healthcare IoT. 2018 IEEE International Conference on Smart Internet of Things (SmartIoT). :122–128.

Healthcare Internet of Things (HIoT) is transforming healthcare industry by providing large scale connectivity for medical devices, patients, physicians, clinical and nursing staff who use them and facilitate real-time monitoring based on the information gathered from the connected things. Heterogeneity and vastness of this network provide both opportunity and challenges for information collection and sharing. Patient-centric information such as health status and medical devices used by them must be protected to respect their safety and privacy, while healthcare knowledge should be shared in confidence by experts for healthcare innovation and timely treatment of patients. In this paper an overview of HIoT is given, emphasizing its characteristics to those of Big Data, and a security and privacy architecture is proposed for it. Context-sensitive role-based access control scheme is discussed to ensure that HIoT is reliable, provides data privacy, and achieves regulatory compliance.