Visible to the public Biblio

Filters: Keyword is capec  [Clear All Filters]
2023-02-02
Mariotti, Francesco, Tavanti, Matteo, Montecchi, Leonardo, Lollini, Paolo.  2022.  Extending a security ontology framework to model CAPEC attack paths and TAL adversary profiles. 2022 18th European Dependable Computing Conference (EDCC). :25–32.
Security evaluation can be performed using a variety of analysis methods, such as attack trees, attack graphs, threat propagation models, stochastic Petri nets, and so on. These methods analyze the effect of attacks on the system, and estimate security attributes from different perspectives. However, they require information from experts in the application domain for properly capturing the key elements of an attack scenario: i) the attack paths a system could be subject to, and ii) the different characteristics of the possible adversaries. For this reason, some recent works focused on the generation of low-level security models from a high-level description of the system, hiding the technical details from the modeler.In this paper we build on an existing ontology framework for security analysis, available in the ADVISE Meta tool, and we extend it in two directions: i) to cover the attack patterns available in the CAPEC database, a comprehensive dictionary of known patterns of attack, and ii) to capture all the adversaries’ profiles as defined in the Threat Agent Library (TAL), a reference library for defining the characteristics of external and internal threat agents ranging from industrial spies to untrained employees. The proposed extension supports a richer combination of adversaries’ profiles and attack paths, and provides guidance on how to further enrich the ontology based on taxonomies of attacks and adversaries.
2020-11-09
Zhu, L., Zhang, Z., Xia, G., Jiang, C..  2019.  Research on Vulnerability Ontology Model. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :657–661.
In order to standardize and describe vulnerability information in detail as far as possible and realize knowledge sharing, reuse and extension at the semantic level, a vulnerability ontology is constructed based on the information security public databases such as CVE, CWE and CAPEC and industry public standards like CVSS. By analyzing the relationship between vulnerability class and weakness class, inference rules are defined to realize knowledge inference from vulnerability instance to its consequence and from one vulnerability instance to another vulnerability instance. The experimental results show that this model can analyze the causal and congeneric relationships between vulnerability instances, which is helpful to repair vulnerabilities and predict attacks.
2018-11-14
Adams, S., Carter, B., Fleming, C., Beling, P. A..  2018.  Selecting System Specific Cybersecurity Attack Patterns Using Topic Modeling. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :490–497.

One challenge for cybersecurity experts is deciding which type of attack would be successful against the system they wish to protect. Often, this challenge is addressed in an ad hoc fashion and is highly dependent upon the skill and knowledge base of the expert. In this study, we present a method for automatically ranking attack patterns in the Common Attack Pattern Enumeration and Classification (CAPEC) database for a given system. This ranking method is intended to produce suggested attacks to be evaluated by a cybersecurity expert and not a definitive ranking of the "best" attacks. The proposed method uses topic modeling to extract hidden topics from the textual description of each attack pattern and learn the parameters of a topic model. The posterior distribution of topics for the system is estimated using the model and any provided text. Attack patterns are ranked by measuring the distance between each attack topic distribution and the topic distribution of the system using KL divergence.