Biblio
A blockchain is a distributed ledger forming a distributed consensus on a history of transactions, and is the underlying technology for the Bitcoin cryptocurrency. However, its applications are far beyond the financial sector. The transaction verification process for cryptocurrencies is much slower than traditional digital transaction systems. One approach to increase transaction speed and scalability is to identify a solution that offers faster Proof of Work. In this paper, we propose a method for accelerating the process of Proof of Work based on parallel mining rather than solo mining. The goal is to ensure that no more than two or more miners put the same effort into solving a specific block. The proposed method includes a process for selection of a manager, distribution of work and a reward system. This method has been implemented in a test environment that contains all the characteristics needed to perform Proof of Work for Bitcoin and has been tested, using a variety of case scenarios, by varying the difficulty level and number of validators. Preliminary results show improvement in the scalability of Proof of Work up to 34% compared to the current system.
Consider the following set-up for the plot of a possible future episode of the TV series Black Mirror: human brains can be connected directly to the net and MiningMind Inc. has developed a technology that merges a reward system with a cryptojacking engine that uses the human brain to mine cryptocurrency (or to carry out some other mining activity). Part of our brain will be committed to cryptographic calculations (mining), leaving the remaining part untouched for everyday operations, i.e., for our brain's normal daily activity. In this short paper, we briefly argue why this set-up might not be so far fetched after all, and explore the impact that such a technology could have on our lives and our society. This article is summarized in: the morning paper an interesting/influential/important paper from the world of CS every weekday morning, as selected by Adrian Colyer