Visible to the public Biblio

Filters: Keyword is video analytics  [Clear All Filters]
2022-04-25
Wu, Fubao, Gao, Lixin, Zhou, Tian, Wang, Xi.  2021.  MOTrack: Real-time Configuration Adaptation for Video Analytics through Movement Tracking. 2021 IEEE Global Communications Conference (GLOBECOM). :01–06.
Video analytics has many applications in traffic control, security monitoring, action/event analysis, etc. With the adoption of deep neural networks, the accuracy of video analytics in video streams has been greatly improved. However, deep neural networks for performing video analytics are compute-intensive. In order to reduce processing time, many systems switch to the lower frame rate or resolution. State-of-the-art switching approaches adjust configurations by profiling video clips on a large configuration space. Multiple configurations are tested periodically and the cheapest one with a desired accuracy is adopted. In this paper, we propose a method that adapts the configuration by analyzing past video analytics results instead of profiling candidate configurations. Our method adopts a lower/higher resolution or frame rate when objects move slow/fast. We train a model that automatically selects the best configuration. We evaluate our method with two real-world video analytics applications: traffic tracking and pose estimation. Compared to the periodic profiling method, our method achieves 3%-12% higher accuracy with the same resource cost and 8-17x faster with comparable accuracy.
2021-01-11
Kanna, J. S. Vignesh, Raj, S. M. Ebenezer, Meena, M., Meghana, S., Roomi, S. Mansoor.  2020.  Deep Learning Based Video Analytics For Person Tracking. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1—6.

As the assets of people are growing, security and surveillance have become a matter of great concern today. When a criminal activity takes place, the role of the witness plays a major role in nabbing the criminal. The witness usually states the gender of the criminal, the pattern of the criminal's dress, facial features of the criminal, etc. Based on the identification marks provided by the witness, the criminal is searched for in the surveillance cameras. Surveillance cameras are ubiquitous and finding criminals from a huge volume of surveillance video frames is a tedious process. In order to automate the search process, proposed a novel smart methodology using deep learning. This method takes gender, shirt pattern, and spectacle status as input to find out the object as person from the video log. The performance of this method achieves an accuracy of 87% in identifying the person in the video frame.

2019-08-12
Islam, Ashraful, Zhang, Yuexi, Yin, Dong, Camps, Octavia, Radke, Richard J..  2018.  Correlating Belongings with Passengers in a Simulated Airport Security Checkpoint. Proceedings of the 12th International Conference on Distributed Smart Cameras. :14:1–14:7.
Automatic algorithms for tracking and associating passengers and their divested objects at an airport security screening checkpoint would have great potential for improving checkpoint efficiency, including flow analysis, theft detection, line-of-sight maintenance, and risk-based screening. In this paper, we present algorithms for these tracking and association problems and demonstrate their effectiveness in a full-scale physical simulation of an airport security screening checkpoint. Our algorithms leverage both hand-crafted and deep-learning-based approaches for passenger and bin tracking, and are able to accurately track and associate objects through a ceiling-mounted multicamera array. We validate our algorithm on ground-truthed datasets collected at the simulated checkpoint that reflect natural passenger behavior, achieving high rates of passenger/object/transfer event detection while maintaining low false alarm and mismatch rates.
2018-11-19
Yaseen, Muhammad Usman, Anjum, Ashiq, Antonopoulos, Nick.  2017.  Modeling and Analysis of a Deep Learning Pipeline for Cloud Based Video Analytics. Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies. :121–130.

Video analytics systems based on deep learning approaches are becoming the basis of many widespread applications including smart cities to aid people and traffic monitoring. These systems necessitate massive amounts of labeled data and training time to perform fine tuning of hyper-parameters for object classification. We propose a cloud based video analytics system built upon an optimally tuned deep learning model to classify objects from video streams. The tuning of the hyper-parameters including learning rate, momentum, activation function and optimization algorithm is optimized through a mathematical model for efficient analysis of video streams. The system is capable of enhancing its own training data by performing transformations including rotation, flip and skew on the input dataset making it more robust and self-adaptive. The use of in-memory distributed training mechanism rapidly incorporates large number of distinguishing features from the training dataset - enabling the system to perform object classification with least human assistance and external support. The validation of the system is performed by means of an object classification case-study using a dataset of 100GB in size comprising of 88,432 video frames on an 8 node cloud. The extensive experimentation reveals an accuracy and precision of 0.97 and 0.96 respectively after a training of 6.8 hours. The system is scalable, robust to classification errors and can be customized for any real-life situation.