Biblio
Deep machine learning techniques have shown promising results in network traffic classification, however, the robustness of these techniques under adversarial threats is still in question. Deep machine learning models are found vulnerable to small carefully crafted adversarial perturbations posing a major question on the performance of deep machine learning techniques. In this paper, we propose a black-box adversarial attack on network traffic classification. The proposed attack successfully evades deep machine learning-based classifiers which highlights the potential security threat of using deep machine learning techniques to realize autonomous networks.
Botnet is one of the major threats on the Internet for committing cybercrimes, such as DDoS attacks, stealing sensitive information, spreading spams, etc. It is a challenging issue to detect modern botnets that are continuously improving for evading detection. In this paper, we propose a machine learning based botnet detection system that is shown to be effective in identifying P2P botnets. Our approach extracts convolutional version of effective flow-based features, and trains a classification model by using a feed-forward artificial neural network. The experimental results show that the accuracy of detection using the convolutional features is better than the ones using the traditional features. It can achieve 94.7% of detection accuracy and 2.2% of false positive rate on the known P2P botnet datasets. Furthermore, our system provides an additional confidence testing for enhancing performance of botnet detection. It further classifies the network traffic of insufficient confidence in the neural network. The experiment shows that this stage can increase the detection accuracy up to 98.6% and decrease the false positive rate up to 0.5%.
Network traffic classification is an important problem in network traffic analysis. It plays a vital role in many network tasks including quality of service, firewall enforcement and security. One of the challenging problems of classifying network traffic is the imbalanced property of network data. Usually, the amount of traffic in some classes is much higher than the amount of traffic in other classes. In this paper, we proposed an application of a deep learning approach to address imbalanced data problem in network traffic classification. We used a recent proposed deep network for unsupervised learning called Auxiliary Classifier Generative Adversarial Network to generate synthesized data samples for balancing between the minor and the major classes. We tested our method on a well-known network traffic dataset and the results showed that our proposed method achieved better performance compared to a recent proposed method for handling imbalanced problem in network traffic classification.