Visible to the public Biblio

Filters: Keyword is legitimate fusion center  [Clear All Filters]
2018-11-19
Samudrala, A. N., Blum, R. S..  2017.  Asymptotic Analysis of a New Low Complexity Encryption Approach for the Internet of Things, Smart Cities and Smart Grid. 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC). :200–204.

Parameter estimation in wireless sensor networks (WSN) using encrypted non-binary quantized data is studied. In a WSN, sensors transmit their observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. Encryption approaches for WSNs with fixed threshold binary quantization were previously explored. However, fixed threshold binary quantization limits parameter estimation to scalar parameters. In this paper, we propose a stochastic encryption approach for WSNs that can operate on non-binary quantized observations and has the capability for vector parameter estimation. We extend a binary stochastic encryption approach proposed previously, to a non-binary generalized case. Sensor outputs are quantized using a quantizer with R + 1 levels, where R $ε$ 1, 2, 3,..., encrypted by flipping them with certain flipping probabilities, and then transmitted. Optimal estimators using maximum-likelihood estimation are derived for both a legitimate fusion center (LFC) and a third party fusion center (TPFC) perspectives. We assume the TPFC is unaware of the encryption. Asymptotic analysis of the estimators is performed by deriving the Cramer-Rao lower bound for LFC estimation, and the asymptotic bias and variance for TPFC estimation. Numerical results validating the asymptotic analysis are presented.