Visible to the public Biblio

Filters: Keyword is smart grid reliability  [Clear All Filters]
2019-03-25
Refaat, S. S., Mohamed, A., Kakosimos, P..  2018.  Self-Healing control strategy; Challenges and opportunities for distribution systems in smart grid. 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018). :1–6.
Implementation of self-healing control system in smart grid is a persisting challenge. Self-Healing control strategy is the important guarantee to implement the smart grid. In addition, it is the support of achieving the secure operation, improving the reliability and security of distribution grid, and realizing the smart distribution grid. Although self-healing control system concept is presented in smart grid context, but the complexity of distribution network structure recommended to choose advanced control and protection system using a self-healing, this system must be able to heal any disturbance in the distribution system of smart grid to improve efficiency, resiliency, continuity, and reliability of the smart grid. This review focuses mostly on the key technology of self-healing control, gives an insight into the role of self-healing in distribution system advantages, study challenges and opportunities in the prospect of utilities. The main contribution of this paper is demonstrating proposed architecture, control strategy for self-healing control system includes fault detection, fault localization, faulted area isolation, and power restoration in the electrical distribution system.
2015-05-01
Marashi, K., Sarvestani, S.S..  2014.  Towards Comprehensive Modeling of Reliability for Smart Grids: Requirements and Challenges. High-Assurance Systems Engineering (HASE), 2014 IEEE 15th International Symposium on. :105-112.


Smart grids utilize computation and communication to improve the efficacy and dependability of power generation, transmission, and distribution. As such, they are among the most critical and complex cyber-physical systems. The success of smart grids in achieving their stated goals is yet to be rigorously proven. In this paper, our focus is on improvements (or lack thereof) in reliability. We discuss vulnerabilities in the smart grid and their potential impact on its reliability, both generally and for the specific example of the IEEE-14 bus system. We conclude the paper by presenting a preliminary Markov imbedded systems model for reliability of smart grids and describe how it can be evolved to capture the vulnerabilities discussed.