Visible to the public Biblio

Filters: Keyword is power distribution reliability  [Clear All Filters]
2021-03-29
Fajri, M., Hariyanto, N., Gemsjaeger, B..  2020.  Automatic Protection Implementation Considering Protection Assessment Method of DER Penetration for Smart Distribution Network. 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP). :323—328.
Due to geographical locations of Indonesia, some technology such as hydro and solar photovoltaics are very attractive to be used and developed. Distribution Energy Resources (DER) is the appropriate schemes implemented to achieve optimal operation respecting the location and capacity of the plant. The Gorontalo sub-system network was chosen as a case study considering both of micro-hydro and PV as contributed to supply the grid. The needs of a smart electrical system are required to improve reliability, power quality, and adaptation to any circumstances during DER application. While the topology was changing over time, intermittent of DER output and bidirectional power flow can be overcome with smart grid systems. In this study, an automation algorithm has been conducted to aid the engineers in solving the protection problems caused by DER implementation. The Protection Security Assessment (PSA) method is used to evaluate the state of the protection system. Determine the relay settings using an adaptive rule-based method on expert systems. The application with a Graphical User Interface (GUI) has been developed to make user easier to get the specific relay settings and locations which are sensitive, fast, reliable, and selective.
2020-07-20
Huang, Rui, Wang, Panbao, Zaery, Mohamed, Wei, Wang, Xu, Dianguo.  2019.  A Distributed Fixed-Time Secondary Controller for DC Microgrids. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). :1–6.

This paper proposes a distributed fixed-time based secondary controller for the DC microgrids (MGs) to overcome the drawbacks of conventional droop control. The controller, based on a distributed fixed-time control approach, can remove the DC voltage deviation and provide proportional current sharing simultaneously within a fixed-time. Comparing with the conventional centralized secondary controller, the controller, using the dynamic consensus, on each converter communicates only with its neighbors on a communication graph which increases the convergence speed and gets an improved performance. The proposed control strategy is simulated in PLECS to test the controller performance, link-failure resiliency, plug and play capability and the feasibility under different time delays.

2020-03-16
Eneh, Joy Nnenna, Onyekachi Orah, Harris, Emeka, Aka Benneth.  2019.  Improving the Reliability and Security of Active Distribution Networks Using SCADA Systems. 2019 IEEE PES/IAS PowerAfrica. :110–115.
The traditional electricity distribution system is rapidly shifting from the passive infrastructure to a more active infrastructure, giving rise to a smart grid. In this project an active electricity distribution network and its components have been studied. A 14-node SCADA-based active distribution network model has been proposed for managing this emerging network infrastructure to ensure reliability and protection of the network The proposed model was developed using matlab /simulink software and the fuzzy logic toolbox. Surge arresters and circuit breakers were modelled and deployed in the network at different locations for protection and isolation of fault conditions. From the reliability analysis of the proposed model, the failure rate and outage hours were reduced due to better response of the system to power fluctuations and fault conditions.
2020-02-26
Diahovchenko, Illia, Kandaperumal, Gowtham, Srivastava, Anurag.  2019.  Distribution Power System Resiliency Improvement Using Distributed Generation and Automated Switching. 2019 IEEE 6th International Conference on Energy Smart Systems (ESS). :126–131.

The contemporary power distribution system is facing an increase in extreme weather events, cybersecurity threats and even physical threats such as terrorism. Therefore there is a growing interest towards resiliency estimation and improvement. In this paper the resiliency enhancement strategy by means of Distributed Energy Resources and Automated Switches is presented. Resiliency scores are calculated using Analytical Hierarchy Process. The developed algorithm was validated on the modified IEEE 123 node system. It provides the most resiliency feasible network that satisfies the primary goal of serving the critical loads.

2020-02-17
Zhao, Guowei, Zhao, Rui, Wang, Qiang, Xue, Hui, Luo, Fang.  2019.  Virtual Network Mapping Algorithm for Self-Healing of Distribution Network. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1442–1445.
This paper focuses on how to provide virtual network (VN) with the survivability of node failure. In the SVNE that responds to node failures, the backup mechanism provided by the VN initial mapping method should be as flexible as possible, so that backup resources can be shared among the VNs, thereby providing survivability support for the most VNs with the least backup overhead, which can improve The utilization of backup resources can also improve the survivability of VN to deal with multi-node failures. For the remapping method of virtual networks, it needs to be higher because it involves both remapping of virtual nodes and remapping of related virtual links. The remapping efficiency, so as to restore the affected VN to a normal state as soon as possible, to avoid affecting the user's business experience. Considering that the SVNE method that actively responds to node failures always has a certain degree of backup resource-specific phenomenon, this section provides a SVNE method that passively responds to node failures. This paper mainly introduces the survivability virtual network initial mapping method based on physical node recoverability in this method.
Maykot, Arthur S., Aranha Neto, Edison A. C., Oliva, Neimar A..  2019.  Automation of Manual Switches in Distribution Networks Focused on Self-Healing: A Step toward Smart Grids. 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1–4.
This work describes the self-healing systems and their benefits in the power distribution networks, with the objective of indicating which manual switch should become, as a matter of priority, automatic. The computational tool used is based on graph theory, genetic algorithms and multicriteria evaluation. There are benefits for consumers, that will benefit from a more reliable and stable system, and for the utility, that can reduce costs with team field and financial compensations payed to consumers in case of continuity indexes violation. Data from a real distribution network from the state of Sao Paulo will be used as a case study for the application of the methodology.
2019-10-02
Zhang, Y., Eisele, S., Dubey, A., Laszka, A., Srivastava, A. K..  2019.  Cyber-Physical Simulation Platform for Security Assessment of Transactive Energy Systems. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
Transactive energy systems (TES) are emerging as a transformative solution for the problems that distribution system operators face due to an increase in the use of distributed energy resources and rapid growth in scalability of managing active distribution system (ADS). On the one hand, these changes pose a decentralized power system control problem, requiring strategic control to maintain reliability and resiliency for the community and for the utility. On the other hand, they require robust financial markets while allowing participation from diverse prosumers. To support the computing and flexibility requirements of TES while preserving privacy and security, distributed software platforms are required. In this paper, we enable the study and analysis of security concerns by developing Transactive Energy Security Simulation Testbed (TESST), a TES testbed for simulating various cyber attacks. In this work, the testbed is used for TES simulation with centralized clearing market, highlighting weaknesses in a centralized system. Additionally, we present a blockchain enabled decentralized market solution supported by distributed computing for TES, which on one hand can alleviate some of the problems that we identify, but on the other hand, may introduce newer issues. Future study of these differing paradigms is necessary and will continue as we develop our security simulation testbed.
Chao, H., Ringlee, R. J..  2018.  Analytical Challenges in Reliability and Resiliency Modeling. 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). :1–5.
A significant number of the generation, transmission and distribution facilities in the North America were designed and configured for serving electric loads and economic activities under certain reliability and resiliency requirements over 30 years ago. With the changing generation mix, the electric grid is tasked to deliver electricity made by fuel uncertain and energy limited resources. How adequate are the existing facilities to meet the industry expectations on reliability? What level of grid resiliency should be designed and built to sustain reliable electric services given the increasing exposure to frequent and lasting severe weather conditions? There is a need to review the modeling assumptions, operating and maintenance records before we can answer these questions.
2019-04-05
Shu, H., Shen, X., Xu, L., Guo, Q., Sun, H..  2018.  A Validity Test Methodfor Transmission Betweens and Transmission Sections Based on Chain Attack Analysisand Line Outage Distribution Factors. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1-6.

The identification of transmission sections is used to improve the efficiency of monitoring the operation of the power grid. In order to test the validity of transmission sections identified, an assessment process is necessary. In addition, Transmission betweenness, an index for finding the key transmission lines in the power grid, should also be verified. In this paper, chain attack is assumed to check the weak links in the grid, thus verifying the transmission betweenness implemented for the system. Moreover, the line outage distribution factors (LODFs) are used to quantify the change of power flow when the leading line in transmission sections breaks down, so that the validity of transmission sections can be proved. Case studies based on IEEE 39 and IEEE 118 -bus system proved the effectiveness of the proposed method.

2019-03-25
Refaat, S. S., Mohamed, A., Kakosimos, P..  2018.  Self-Healing control strategy; Challenges and opportunities for distribution systems in smart grid. 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018). :1–6.
Implementation of self-healing control system in smart grid is a persisting challenge. Self-Healing control strategy is the important guarantee to implement the smart grid. In addition, it is the support of achieving the secure operation, improving the reliability and security of distribution grid, and realizing the smart distribution grid. Although self-healing control system concept is presented in smart grid context, but the complexity of distribution network structure recommended to choose advanced control and protection system using a self-healing, this system must be able to heal any disturbance in the distribution system of smart grid to improve efficiency, resiliency, continuity, and reliability of the smart grid. This review focuses mostly on the key technology of self-healing control, gives an insight into the role of self-healing in distribution system advantages, study challenges and opportunities in the prospect of utilities. The main contribution of this paper is demonstrating proposed architecture, control strategy for self-healing control system includes fault detection, fault localization, faulted area isolation, and power restoration in the electrical distribution system.
2019-02-14
Chen, B., Lu, Z., Zhou, H..  2018.  Reliability Assessment of Distribution Network Considering Cyber Attacks. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1-6.

With the rapid development of the smart grid, a large number of intelligent sensors and meters have been introduced in distribution network, which will inevitably increase the integration of physical networks and cyber networks, and bring potential security threats to the operating system. In this paper, the functions of the information system on distribution network are described when cyber attacks appear at the intelligent electronic devices (lED) or at the distribution main station. The effect analysis of the distribution network under normal operating condition or in the fault recovery process is carried out, and the reliability assessment model of the distribution network considering cyber attacks is constructed. Finally, the IEEE-33-bus distribution system is taken as a test system to presented the evaluation process based on the proposed model.

2018-11-14
Teive, R. C. G., Neto, E. A. C. A., Mussoi, F. L. R., Rese, A. L. R., Coelho, J., Andrade, F. F., Cardoso, F. L., Nogueira, F., Parreira, J. P..  2017.  Intelligent System for Automatic Performance Evaluation of Distribution System Operators. 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP). :1–6.
The performance evaluation of distribution network operators is essential for the electrical utilities to know how prepared the operators are to execute their operation standards and rules, searching for minimizing the time of power outage, after some contingency. The performance of operators can be evaluated by the impact of their actions on several technical and economic indicators of the distribution system. This issue is a complex problem, whose solution involves necessarily some expertise and a multi-criteria evaluation. This paper presents a Tutorial Expert System (TES) for performance evaluation of electrical distribution network operators after a given contingency in the electrical network. The proposed TES guides the evaluation process, taking into account technical, economic and personal criteria, aiding the quantification of these criteria. A case study based on real data demonstrates the applicability of the performance evaluation procedure of distribution network operators.
2017-12-20
Hao, K., Achanta, S. V., Fowler, J., Keckalo, D..  2017.  Apply a wireless line sensor system to enhance distribution protection schemes. 2017 70th Annual Conference for Protective Relay Engineers (CPRE). :1–11.

Traditionally, utility crews have used faulted circuit indicators (FCIs) to locate faulted line sections. FCIs monitor current and provide a local visual indication of recent fault activity. When a fault occurs, the FCIs operate, triggering a visual indication that is either a mechanical target (flag) or LED. There are also enhanced FCIs with communications capability, providing fault status to the outage management system (OMS) or supervisory control and data acquisition (SCADA) system. Such quickly communicated information results in faster service restoration and reduced outage times. For distribution system protection, protection devices (such as recloser controls) must coordinate with downstream devices (such as fuses or other recloser controls) to clear faults. Furthermore, if there are laterals on a feeder that are protected by a recloser control, it is desirable to communicate to the recloser control which lateral had the fault in order to enhance tripping schemes. Because line sensors are typically placed along distribution feeders, they are capable of sensing fault status and characteristics closer to the fault. If such information can be communicated quickly to upstream protection devices, at protection speeds, the protection devices can use this information to securely speed up distribution protection scheme operation. With recent advances in low-power electronics, wireless communications, and small-footprint sensor transducers, wireless line sensors can now provide fault information to the protection devices with low latencies that support protection speeds. This paper describes the components of a wireless protection sensor (WPS) system, its integration with protection devices, and how the fault information can be transmitted to such devices. Additionally, this paper discusses how the protection devices use this received fault information to securely speed up the operation speed of and improve the selectivity of distribution protection schemes, in add- tion to locating faulted line sections.

2017-11-13
Patti, E., Syrri, A. L. A., Jahn, M., Mancarella, P., Acquaviva, A., Macii, E..  2016.  Distributed Software Infrastructure for General Purpose Services in Smart Grid. IEEE Transactions on Smart Grid. 7:1156–1163.

In this paper, the design of an event-driven middleware for general purpose services in smart grid (SG) is presented. The main purpose is to provide a peer-to-peer distributed software infrastructure to allow the access of new multiple and authorized actors to SGs information in order to provide new services. To achieve this, the proposed middleware has been designed to be: 1) event-based; 2) reliable; 3) secure from malicious information and communication technology attacks; and 4) to enable hardware independent interoperability between heterogeneous technologies. To demonstrate practical deployment, a numerical case study applied to the whole U.K. distribution network is presented, and the capabilities of the proposed infrastructure are discussed.

2015-05-06
Sgouras, K.I., Birda, A.D., Labridis, D.P..  2014.  Cyber attack impact on critical Smart Grid infrastructures. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

Electrical Distribution Networks face new challenges by the Smart Grid deployment. The required metering infrastructures add new vulnerabilities that need to be taken into account in order to achieve Smart Grid functionalities without considerable reliability trade-off. In this paper, a qualitative assessment of the cyber attack impact on the Advanced Metering Infrastructure (AMI) is initially attempted. Attack simulations have been conducted on a realistic Grid topology. The simulated network consisted of Smart Meters, routers and utility servers. Finally, the impact of Denial-of-Service and Distributed Denial-of-Service (DoS/DDoS) attacks on distribution system reliability is discussed through a qualitative analysis of reliability indices.
 

2015-05-05
Ming Xiang, Tauch, S., Liu, W..  2014.  Dependability and Resource Optimation Analysis for Smart Grid Communication Networks. Big Data and Cloud Computing (BdCloud), 2014 IEEE Fourth International Conference on. :676-681.

Smart Grid is the trend of next generation power distribution and network management that enable a two -- way interactive communication and operation between consumers and suppliers, so as to achieve intelligent resource management and optimization. The wireless mesh network technology is a promising infrastructure solution to support these smart functionalities, while it has some inherent vulnerabilities and cyber-attack risks to be addressed. As Smart Grid is heavily relying on the underlie communication networks, which makes their security and dependability issues critical to the entire smart grid technology. Several studies have been conducted in the field of Smart Grid security, but few works were focused on the dependability and its associated resource analysis of the control center networks. In this paper, we have investigated the dependability modeling and also resource allocation in redundant communication networks by adopting two mathematical approaches, Reliability Block Diagrams (RBD) and Stochastic Petri Nets (SPNs), to analyze the dependability of control center networks in Smart Grid environment. We have applied our proposed modeling approach in an extensive case study to evaluate the availability of smart gird networks with different redundancy mechanisms. A combination of dependability models and reliability importance are used to analyze the network availability according to the most important components. We also show the variation of network availability in accordance with Mean Time to Failure (MTTF) in different network architectures.

2015-05-01
Sgouras, K.I., Birda, A.D., Labridis, D.P..  2014.  Cyber attack impact on critical Smart Grid infrastructures. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

Electrical Distribution Networks face new challenges by the Smart Grid deployment. The required metering infrastructures add new vulnerabilities that need to be taken into account in order to achieve Smart Grid functionalities without considerable reliability trade-off. In this paper, a qualitative assessment of the cyber attack impact on the Advanced Metering Infrastructure (AMI) is initially attempted. Attack simulations have been conducted on a realistic Grid topology. The simulated network consisted of Smart Meters, routers and utility servers. Finally, the impact of Denial-of-Service and Distributed Denial-of-Service (DoS/DDoS) attacks on distribution system reliability is discussed through a qualitative analysis of reliability indices.