Visible to the public Biblio

Filters: Keyword is piezoelectric transducers  [Clear All Filters]
2021-01-20
Sato, Y., Yanagitani, T..  2020.  Giga-hertz piezoelectric epitaxial PZT transducer for the application of fingerprint imaging. 2020 IEEE International Ultrasonics Symposium (IUS). :1—3.

The fingerprint sensor based on pMUTs was reported [1]. Spatial resolution of the image depends on the size of the acoustic source when a plane wave is used. If the size of the acoustic source is smaller, piezoelectric films with high dielectric constant are required. In this study, in order to obtain small acoustic source, we proposed Pb(Zrx Th-x)O3 (PZT) epitaxial transducers with high dielectric constant. PbTiO3 (PTO) epitaxial films were grown on conductive La-SrTiO3 (STO) substrate by RF magnetron sputtering. Longitudinal wave conversion loss of PTO transducers was measured by a network analyzer. The thermoplastic elastomer was used instead of real fingerprint. We confirmed that conversion loss of piezoelectric film/substrate structure was increased by contacting the elastomer due the change of reflection coefficient of the substrate bottom/elastomer interface. Minimum conversion loss images were obtained by mechanically scanning the soft probe on the transducer surface. We achieved the detection of the fingerprint phantom based on the elastomer in the GHz.

2020-01-13
Gou, Yue, Dai, Yu-yu.  2019.  Simulation Study on Wideband Transducer with Longitudinal-Flexural Coupling Vibration. 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :1–4.
This paper designed a longitudinal bending coupled piezoelectric transducer. The transducer is composed of a rear metal block, a longitudinally polarized piezoelectric ceramic piece and a slotted round front cover. The longitudinal vibration of the piezoelectric oscillators drive the front cover to generate bending vibration to widen the operating frequency band while reducing the fluctuation of transmission voltage response. In this paper, the design method of this multimode coupled transducer is given, and the method is verified by numerical simulation. The results show that the analytical theory and numerical simulation results have good consistency. This longitudinal-flexural coupled vibration transducer widens the bandwidth while preserving the emission voltage response.
Wang, Xiao-yu, Li, Cong-cong, Wu, Hao-dong, Zhang, De, Zhang, Xiao-dong, Gong, Xun.  2019.  NDE Application of Air-Coupled Transducer for Surface Crack Detection. 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :1–4.
According to the technical difficulties of the air-coupled piezoelectric ultrasonic transducer, 1-3 type piezoelectric composites and double matching layers structure are adopted in order to solve the acoustic impedance mismatch at the interface between the piezoelectric materials and air. The optimal design of the matching layer thickness for double matching layers structure air-coupled ultrasonic transducer is also completed through experiments. Based on this, 440 kHz flat-plate and focused air-coupled piezoelectric ultrasonic transducer are designed, fabricated and characterized. Finally, surface cracks are detected using the focused air-coupled piezoelectric ultrasonic transducer.
2018-12-10
Khan, M., Reza, M. Q., Sirdeshmukh, S. P. S. M. A..  2017.  A prototype model development for classification of material using acoustic resonance spectroscopy. 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). :128–131.

In this work, a measurement system is developed based on acoustic resonance which can be used for classification of materials. Basically, the inspection methods based on acoustic, utilized for containers screening in the field, identification of defective pills hold high significance in the fields of health, security and protection. However, such techniques are constrained by costly instrumentation, offline analysis and complexities identified with transducer holder physical coupling. So a simple, non-destructive and amazingly cost effective technique in view of acoustic resonance has been formulated here for quick data acquisition and analysis of acoustic signature of liquids for their constituent identification and classification. In this system, there are two ceramic coated piezoelectric transducers attached at both ends of V-shaped glass, one is act as transmitter and another as receiver. The transmitter generates sound with the help of white noise generator. The pick up transducer on another end of the V-shaped glass rod detects the transmitted signal. The recording is being done with arduino interfaced to computer. The FFTs of recorded signals are being analyzed and the resulted resonant frequency observed for water, water+salt and water+sugar are 4.8 KHz, 6.8 KHz and 3.2 KHz respectively. The different resonant frequency in case different sample is being observed which shows that the developed prototype model effectively classifying the materials.