Visible to the public Biblio

Filters: Keyword is text-dependent spoofing detection  [Clear All Filters]
2018-12-10
Schonherr, L., Zeiler, S., Kolossa, D..  2017.  Spoofing detection via simultaneous verification of audio-visual synchronicity and transcription. 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). :591–598.

Acoustic speaker recognition systems are very vulnerable to spoofing attacks via replayed or synthesized utterances. One possible countermeasure is audio-visual speaker recognition. Nevertheless, the addition of the visual stream alone does not prevent spoofing attacks completely and only provides further information to assess the authenticity of the utterance. Many systems consider audio and video modalities independently and can easily be spoofed by imitating only a single modality or by a bimodal replay attack with a victim's photograph or video. Therefore, we propose the simultaneous verification of the data synchronicity and the transcription in a challenge-response setup. We use coupled hidden Markov models (CHMMs) for a text-dependent spoofing detection and introduce new features that provide information about the transcriptions of the utterance and the synchronicity of both streams. We evaluate the features for various spoofing scenarios and show that the combination of the features leads to a more robust recognition, also in comparison to the baseline method. Additionally, by evaluating the data on unseen speakers, we show the spoofing detection to be applicable in speaker-independent use-cases.