Biblio
Cybersecurity community is slowly leveraging Machine Learning (ML) to combat ever evolving threats. One of the biggest drivers for successful adoption of these models is how well domain experts and users are able to understand and trust their functionality. As these black-box models are being employed to make important predictions, the demand for transparency and explainability is increasing from the stakeholders.Explanations supporting the output of ML models are crucial in cyber security, where experts require far more information from the model than a simple binary output for their analysis. Recent approaches in the literature have focused on three different areas: (a) creating and improving explainability methods which help users better understand the internal workings of ML models and their outputs; (b) attacks on interpreters in white box setting; (c) defining the exact properties and metrics of the explanations generated by models. However, they have not covered, the security properties and threat models relevant to cybersecurity domain, and attacks on explainable models in black box settings.In this paper, we bridge this gap by proposing a taxonomy for Explainable Artificial Intelligence (XAI) methods, covering various security properties and threat models relevant to cyber security domain. We design a novel black box attack for analyzing the consistency, correctness and confidence security properties of gradient based XAI methods. We validate our proposed system on 3 security-relevant data-sets and models, and demonstrate that the method achieves attacker's goal of misleading both the classifier and explanation report and, only explainability method without affecting the classifier output. Our evaluation of the proposed approach shows promising results and can help in designing secure and robust XAI methods.
Growing interest in eXplainable Artificial Intelligence (XAI) aims to make AI and machine learning more understandable to human users. However, most existing work focuses on new algorithms, and not on usability, practical interpretability and efficacy on real users. In this vision paper, we propose a new research area of eXplainable AI for Designers (XAID), specifically for game designers. By focusing on a specific user group, their needs and tasks, we propose a human-centered approach for facilitating game designers to co-create with AI/ML techniques through XAID. We illustrate our initial XAID framework through three use cases, which require an understanding both of the innate properties of the AI techniques and users' needs, and we identify key open challenges.
Inside AI research and engineering communities, explainable artificial intelligence (XAI) is one of the most provocative and promising lines of AI research and development today. XAI has the potential to make expressible the context and domain-specific benefits of particular AI applications to a diverse and inclusive array of stakeholders and audiences. In addition, XAI has the potential to make AI benefit claims more deeply evidenced. Outside AI research and engineering communities, one of the most provocative and promising lines of research happening today is the work on "humanoid capital" at the edges of the social, behavioral, and economic sciences. Humanoid capital theorists renovate older discussions of "human capital" as part of trying to make calculable and provable the domain-specific capital value, value-adding potential, or relative worth (i.e., advantages and benefits) of different humanoid models over time. Bringing these two exciting streams of research into direct conversation for the first time is the larger goal of this landmark paper. The primary research contribution of the paper is to detail some of the key requirements for making humanoid robots explainable in capital terms using XAI approaches. In this regard, the paper not only brings two streams of provocative research into much-needed conversation but also advances both streams.