Visible to the public Biblio

Filters: Keyword is Industrial IoT  [Clear All Filters]
2023-03-03
Krishnan, Ashwin A, Rajendran, Satish Kumar, Sunil Kumar, T K.  2022.  Improved PKI Certificate Lifecycle Management With Centralized Device Management For Industrial IoT. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1–5.
The present industrial scenario requires frequent transfer of data between remote servers and on premise devices and hence the risk of attacks on these data cannot be overlooked. Such security risk is even aggravated in case of sensitive information being compromised due to inefficient security implementations. Various forms of security implementations are being discussed and experimented for the same. With the introduction of devices with better processing capabilities, Public Key Infrastructure is a very popular technique being widely implemented, wherein symmetric and asymmetric key based encryptions are used inorder to secure the data being transferred and it has proven to be an effective technique. The PKI however suffers certain drawbacks and it is evident from the attacks. A system specifically designed for scenarios such as a factory having a centralised device management system requiring multiple devices to communicate and upload data safely to server is being put forward in this paper.
2022-07-14
Ahmad, Syed Farhan, Ferjani, Mohamed Yassine, Kasliwal, Keshav.  2021.  Enhancing Security in the Industrial IoT Sector using Quantum Computing. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1—5.
The development of edge computing and machine learning technologies have led to the growth of Industrial IoT systems. Autonomous decision making and smart manufacturing are flourishing in the current age of Industry 4.0. By providing more compute power to edge devices and connecting them to the internet, the so-called Cyber Physical Systems are prone to security threats like never before. Security in the current industry is based on cryptographic techniques that use pseudorandom number keys. Keys generated by a pseudo-random number generator pose a security threat as they can be predicted by a malicious third party. In this work, we propose a secure Industrial IoT Architecture that makes use of true random numbers generated by a quantum random number generator (QRNG). CITRIOT's FireConnect IoT node is used to show the proof of concept in a quantum-safe network where the random keys are generated by a cloud based quantum device. We provide an implementation of QRNG on both real quantum computer and quantum simulator. Then, we compare the results with pseudorandom numbers generated by a classical computer.
2021-09-16
Ambareen, Javeria, M, Prabhakar, Ara, Tabassum.  2020.  Edge Data Security for RFID-Based Devices. 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE). :272–277.
Radio-frequency identification (RFID) has become a preferred technology for monitoring in industrial internet of things (IIoT) applications like supply chain, medical industry, vehicle tracking and warehouse monitoring where information is required continually. Typical security threats seen in these applications are denial of service (DOS) attack, transmission attack etc. We propose a novel edge data security schema based on spike modulation along with backscatter communication technique to modulate both sensor and identification (ID) information. It is observed that this data encoding schema works well even in a multi-tag single-reader environment. Further, it uses lower power and offers a low-cost solution for Industrial IoT applications.
Balistri, Eugenio, Casellato, Francesco, Giannelli, Carlo, Stefanelli, Cesare.  2020.  Blockchain for Increased Cyber-Resiliency of Industrial Edge Environments. 2020 IEEE International Conference on Smart Computing (SMARTCOMP). :1–8.
The advent of the Internet of Things (IoT) together with its spread in industrial environments have changed pro-duction lines, by dramatically fostering the dynamicity of data sharing and the openness of machines. However, the increased flexibility and openness of the industrial environment (also pushed by the adoption of Edge devices) must not negatively affect the security and safety of production lines and its opera-tional processes. In fact, opening industrial environments towards the Internet and increasing interactions among machines may represent a security threat, if not properly managed. The paper originally proposes the adoption of the Blockchain to securely store in distributed ledgers topology information and access rules, with the primary goal of maximizing the cyber-resiliency of industrial networks. In this manner, it is possible to store and query topology information and security access rules in a completely distributed manner, ensuring data availability even in case a centralized control point is temporarily down or the network partitioned. Moreover, Blockchain consensus algorithms can be used to foster a participative validation of topology information, to reciprocally ensure the identity of interacting machines/nodes, to securely distribute topology information and commands in a privacy-preserving manner, and to trace any past modification in a non-repudiable manner.
2020-12-21
Neises, J., Moldovan, G., Walloschke, T., Popovici, B..  2020.  Trustworthiness in Supply Chains : A modular extensible Approach applied to Industrial IoT. 2020 Global Internet of Things Summit (GIoTS). :1–6.
Typical transactions in cross-company Industry 4.0 supply chains require a dynamically evaluable form of trustworthiness. Therefore, specific requirements on the parties involved, down to the machine level, for automatically verifiable operations shall facilitate the realization of the economic advantages of future flexible process chains in production. The core of the paper is a modular and extensible model for the assessment of trustworthiness in industrial IoT based on the Industrial Internet Security Framework of the Industrial Internet Consortium, which among other things defines five trustworthiness key characteristics of NIST. This is the starting point for a flexible model, which contains features as discussed in ISO/IEC JTC 1/AG 7 N51 or trustworthiness profiles as used in regulatory requirements. Specific minimum and maximum requirement parameters define the range of trustworthy operation. An automated calculation of trustworthiness in a dynamic environment based on an initial trust metric is presented. The evaluation can be device-based, connection-based, behaviour-based and context-based and thus become part of measurable, trustworthy, monitorable Industry 4.0 scenarios. Finally, the dynamic evaluation of automatable trust models of industrial components is illustrated based on the Multi-Vendor-Industry of the Horizon 2020 project SecureIoT. (grant agreement number 779899).
2020-11-17
Hossain, M. S., Ramli, M. R., Lee, J. M., Kim, D.-S..  2019.  Fog Radio Access Networks in Internet of Battlefield Things (IoBT) and Load Balancing Technology. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :750—754.

The recent trend of military is to combined Internet of Things (IoT) knowledge to their field for enhancing the impact in battlefield. That's why Internet of battlefield (IoBT) is our concern. This paper discusses how Fog Radio Access Network(F-RAN) can provide support for local computing in Industrial IoT and IoBT. F-RAN can play a vital role because of IoT devices are becoming popular and the fifth generation (5G) communication is also an emerging issue with ultra-low latency, energy consumption, bandwidth efficiency and wide range of coverage area. To overcome the disadvantages of cloud radio access networks (C-RAN) F-RAN can be introduced where a large number of F-RAN nodes can take part in joint distributed computing and content sharing scheme. The F-RAN in IoBT is effective for enhancing the computing ability with fog computing and edge computing at the network edge. Since the computing capability of the fog equipment are weak, to overcome the difficulties of fog computing in IoBT this paper illustrates some challenging issues and solutions to improve battlefield efficiency. Therefore, the distributed computing load balancing problem of the F-RAN is researched. The simulation result indicates that the load balancing strategy has better performance for F-RAN architecture in the battlefield.

2020-11-02
Bloom, Gedare, Alsulami, Bassma, Nwafor, Ebelechukwu, Bertolotti, Ivan Cibrario.  2018.  Design patterns for the industrial Internet of Things. 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). :1—10.
The Internet of Things (IoT) is a vast collection of interconnected sensors, devices, and services that share data and information over the Internet with the objective of leveraging multiple information sources to optimize related systems. The technologies associated with the IoT have significantly improved the quality of many existing applications by reducing costs, improving functionality, increasing access to resources, and enhancing automation. The adoption of IoT by industries has led to the next industrial revolution: Industry 4.0. The rise of the Industrial IoT (IIoT) promises to enhance factory management, process optimization, worker safety, and more. However, the rollout of the IIoT is not without significant issues, and many of these act as major barriers that prevent fully achieving the vision of Industry 4.0. One major area of concern is the security and privacy of the massive datasets that are captured and stored, which may leak information about intellectual property, trade secrets, and other competitive knowledge. As a way forward toward solving security and privacy concerns, we aim in this paper to identify common input-output (I/O) design patterns that exist in applications of the IIoT. These design patterns enable constructing an abstract model representation of data flow semantics used by such applications, and therefore better understand how to secure the information related to IIoT operations. In this paper, we describe communication protocols and identify common I/O design patterns for IIoT applications with an emphasis on data flow in edge devices, which, in the industrial control system (ICS) setting, are most often involved in process control or monitoring.
2020-07-13
Inn, Arba’iah, Hassan, Rosilah, Mohd Aman, Azana Hafizah, Abdul Latiff, Liza.  2019.  Framework for Handover process using Visible Light Communications in 5G. 2019 Symposium on Future Telecommunication Technologies (SOFTT). 1:1–4.
Internet of Things (IoT) revolution in 5th Generation (5G) will dynamically support all user, devices and customer worldwide where these devices, mechanical and digital machines will be connected and are able to communicate and transfer data over the network. In industries, the evolution of these technologies, known as Industrial IoT (IIoT) will enable machines to be connected and communicate where else, Internet of Everything (IoE) makes the connection more relevant between all smart devices, machines and also people with a huge data, high speed and high security. The growth of these technologies has made Radio Frequency (RF) spectrum resources for wireless communication to be more saturated. In order to solve this problem, new wireless communication technologies are proposed to meet the demand and also to enhance the performance of the system and overcome the existing bandwidth limitations. Studies done shows that Light-Fidelity (Li-Fi), based on Visible Light Communications (VLC) is one of the most promising technology in future which is based on optical wireless communication. Initial study on the Li-Fi concept has focuses on achieving speed, bi-directional transmission concept and supports multiuser access. In this paper we propose a frame work focuses on the handover process for indoor environment by using the steerable Access Point (AP) and compare the output result with fix Access Point.
2020-05-04
Chen, Hanlin, Hu, Ming, Yan, Hui, Yu, Ping.  2019.  Research on Industrial Internet of Things Security Architecture and Protection Strategy. 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :365–368.

Industrial Internet of Things (IIoT) is a fusion of industrial automation systems and IoT systems. It features comprehensive sensing, interconnected transmission, intelligent processing, self-organization and self-maintenance. Its applications span intelligent transportation, smart factories, and intelligence. Many areas such as power grid and intelligent environment detection. With the widespread application of IIoT technology, the cyber security threats to industrial IoT systems are increasing day by day, and information security issues have become a major challenge in the development process. In order to protect the industrial IoT system from network attacks, this paper aims to study the industrial IoT information security protection technology, and the typical architecture of industrial Internet of things system, and analyzes the network security threats faced by industrial Internet of things system according to the different levels of the architecture, and designs the security protection strategies applied to different levels of structures based on the specific means of network attack.

2020-03-16
White, Ruffin, Caiazza, Gianluca, Jiang, Chenxu, Ou, Xinyue, Yang, Zhiyue, Cortesi, Agostino, Christensen, Henrik.  2019.  Network Reconnaissance and Vulnerability Excavation of Secure DDS Systems. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :57–66.

Data Distribution Service (DDS) is a realtime peer-to-peer protocol that serves as a scalable middleware between distributed networked systems found in many Industrial IoT domains such as automotive, medical, energy, and defense. Since the initial ratification of the standard, specifications have introduced a Security Model and Service Plugin Interface (SPI) architecture, facilitating authenticated encryption and data centric access control while preserving interoperable data exchange. However, as Secure DDS v1.1, the default plugin specifications presently exchanges digitally signed capability lists of both participants in the clear during the crypto handshake for permission attestation; thus breaching confidentiality of the context of the connection. In this work, we present an attacker model that makes use of network reconnaissance afforded by this leaked context in conjunction with formal verification and model checking to arbitrarily reason about the underlying topology and reachability of information flow, enabling targeted attacks such as selective denial of service, adversarial partitioning of the data bus, or vulnerability excavation of vendor implementations.

2018-12-10
Oyekanlu, E..  2018.  Distributed Osmotic Computing Approach to Implementation of Explainable Predictive Deep Learning at Industrial IoT Network Edges with Real-Time Adaptive Wavelet Graphs. 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). :179–188.
Challenges associated with developing analytics solutions at the edge of large scale Industrial Internet of Things (IIoT) networks close to where data is being generated in most cases involves developing analytics solutions from ground up. However, this approach increases IoT development costs and system complexities, delay time to market, and ultimately lowers competitive advantages associated with delivering next-generation IoT designs. To overcome these challenges, existing, widely available, hardware can be utilized to successfully participate in distributed edge computing for IIoT systems. In this paper, an osmotic computing approach is used to illustrate how distributed osmotic computing and existing low-cost hardware may be utilized to solve complex, compute-intensive Explainable Artificial Intelligence (XAI) deep learning problem from the edge, through the fog, to the network cloud layer of IIoT systems. At the edge layer, the C28x digital signal processor (DSP), an existing low-cost, embedded, real-time DSP that has very wide deployment and integration in several IoT industries is used as a case study for constructing real-time graph-based Coiflet wavelets that could be used for several analytic applications including deep learning pre-processing applications at the edge and fog layers of IIoT networks. Our implementation is the first known application of the fixed-point C28x DSP to construct Coiflet wavelets. Coiflet Wavelets are constructed in the form of an osmotic microservice, using embedded low-level machine language to program the C28x at the network edge. With the graph-based approach, it is shown that an entire Coiflet wavelet distribution could be generated from only one wavelet stored in the C28x based edge device, and this could lead to significant savings in memory at the edge of IoT networks. Pearson correlation coefficient is used to select an edge generated Coiflet wavelet and the selected wavelet is used at the fog layer for pre-processing and denoising IIoT data to improve data quality for fog layer based deep learning application. Parameters for implementing deep learning at the fog layer using LSTM networks have been determined in the cloud. For XAI, communication network noise is shown to have significant impact on results of predictive deep learning at IIoT network fog layer.