Biblio
The recent trend of military is to combined Internet of Things (IoT) knowledge to their field for enhancing the impact in battlefield. That's why Internet of battlefield (IoBT) is our concern. This paper discusses how Fog Radio Access Network(F-RAN) can provide support for local computing in Industrial IoT and IoBT. F-RAN can play a vital role because of IoT devices are becoming popular and the fifth generation (5G) communication is also an emerging issue with ultra-low latency, energy consumption, bandwidth efficiency and wide range of coverage area. To overcome the disadvantages of cloud radio access networks (C-RAN) F-RAN can be introduced where a large number of F-RAN nodes can take part in joint distributed computing and content sharing scheme. The F-RAN in IoBT is effective for enhancing the computing ability with fog computing and edge computing at the network edge. Since the computing capability of the fog equipment are weak, to overcome the difficulties of fog computing in IoBT this paper illustrates some challenging issues and solutions to improve battlefield efficiency. Therefore, the distributed computing load balancing problem of the F-RAN is researched. The simulation result indicates that the load balancing strategy has better performance for F-RAN architecture in the battlefield.
Industrial Internet of Things (IIoT) is a fusion of industrial automation systems and IoT systems. It features comprehensive sensing, interconnected transmission, intelligent processing, self-organization and self-maintenance. Its applications span intelligent transportation, smart factories, and intelligence. Many areas such as power grid and intelligent environment detection. With the widespread application of IIoT technology, the cyber security threats to industrial IoT systems are increasing day by day, and information security issues have become a major challenge in the development process. In order to protect the industrial IoT system from network attacks, this paper aims to study the industrial IoT information security protection technology, and the typical architecture of industrial Internet of things system, and analyzes the network security threats faced by industrial Internet of things system according to the different levels of the architecture, and designs the security protection strategies applied to different levels of structures based on the specific means of network attack.
Data Distribution Service (DDS) is a realtime peer-to-peer protocol that serves as a scalable middleware between distributed networked systems found in many Industrial IoT domains such as automotive, medical, energy, and defense. Since the initial ratification of the standard, specifications have introduced a Security Model and Service Plugin Interface (SPI) architecture, facilitating authenticated encryption and data centric access control while preserving interoperable data exchange. However, as Secure DDS v1.1, the default plugin specifications presently exchanges digitally signed capability lists of both participants in the clear during the crypto handshake for permission attestation; thus breaching confidentiality of the context of the connection. In this work, we present an attacker model that makes use of network reconnaissance afforded by this leaked context in conjunction with formal verification and model checking to arbitrarily reason about the underlying topology and reachability of information flow, enabling targeted attacks such as selective denial of service, adversarial partitioning of the data bus, or vulnerability excavation of vendor implementations.