Visible to the public Biblio

Filters: Keyword is deep learning methods  [Clear All Filters]
2020-08-24
Raghavan, Pradheepan, Gayar, Neamat El.  2019.  Fraud Detection using Machine Learning and Deep Learning. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :334–339.
Frauds are known to be dynamic and have no patterns, hence they are not easy to identify. Fraudsters use recent technological advancements to their advantage. They somehow bypass security checks, leading to the loss of millions of dollars. Analyzing and detecting unusual activities using data mining techniques is one way of tracing fraudulent transactions. transactions. This paper aims to benchmark multiple machine learning methods such as k-nearest neighbor (KNN), random forest and support vector machines (SVM), while the deep learning methods such as autoencoders, convolutional neural networks (CNN), restricted boltzmann machine (RBM) and deep belief networks (DBN). The datasets which will be used are the European (EU) Australian and German dataset. The Area Under the ROC Curve (AUC), Matthews Correlation Coefficient (MCC) and Cost of failure are the 3-evaluation metrics that would be used.
2019-10-07
Agrawal, R., Stokes, J. W., Selvaraj, K., Marinescu, M..  2019.  Attention in Recurrent Neural Networks for Ransomware Detection. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3222–3226.

Ransomware, as a specialized form of malicious software, has recently emerged as a major threat in computer security. With an ability to lock out user access to their content, recent ransomware attacks have caused severe impact at an individual and organizational level. While research in malware detection can be adapted directly for ransomware, specific structural properties of ransomware can further improve the quality of detection. In this paper, we adapt the deep learning methods used in malware detection for detecting ransomware from emulation sequences. We present specialized recurrent neural networks for capturing local event patterns in ransomware sequences using the concept of attention mechanisms. We demonstrate the performance of enhanced LSTM models on a sequence dataset derived by the emulation of ransomware executables targeting the Windows environment.

2019-08-12
Liu, Y., Yang, Y., Shi, A., Jigang, P., Haowei, L..  2019.  Intelligent monitoring of indoor surveillance video based on deep learning. 2019 21st International Conference on Advanced Communication Technology (ICACT). :648–653.

With the rapid development of information technology, video surveillance system has become a key part in the security and protection system of modern cities. Especially in prisons, surveillance cameras could be found almost everywhere. However, with the continuous expansion of the surveillance network, surveillance cameras not only bring convenience, but also produce a massive amount of monitoring data, which poses huge challenges to storage, analytics and retrieval. The smart monitoring system equipped with intelligent video analytics technology can monitor as well as pre-alarm abnormal events or behaviours, which is a hot research direction in the field of surveillance. This paper combines deep learning methods, using the state-of-the-art framework for instance segmentation, called Mask R-CNN, to train the fine-tuning network on our datasets, which can efficiently detect objects in a video image while simultaneously generating a high-quality segmentation mask for each instance. The experiment show that our network is simple to train and easy to generalize to other datasets, and the mask average precision is nearly up to 98.5% on our own datasets.

2019-02-25
Gupta, M., Bakliwal, A., Agarwal, S., Mehndiratta, P..  2018.  A Comparative Study of Spam SMS Detection Using Machine Learning Classifiers. 2018 Eleventh International Conference on Contemporary Computing (IC3). :1–7.
With technological advancements and increment in content based advertisement, the use of Short Message Service (SMS) on phones has increased to such a significant level that devices are sometimes flooded with a number of spam SMS. These spam messages can lead to loss of private data as well. There are many content-based machine learning techniques which have proven to be effective in filtering spam emails. Modern day researchers have used some stylistic features of text messages to classify them to be ham or spam. SMS spam detection can be greatly influenced by the presence of known words, phrases, abbreviations and idioms. This paper aims to compare different classifying techniques on different datasets collected from previous research works, and evaluate them on the basis of their accuracies, precision, recall and CAP Curve. The comparison has been performed between traditional machine learning techniques and deep learning methods.
2018-12-10
Volz, V., Majchrzak, K., Preuss, M..  2018.  A Social Science-based Approach to Explanations for (Game) AI. 2018 IEEE Conference on Computational Intelligence and Games (CIG). :1–2.

The current AI revolution provides us with many new, but often very complex algorithmic systems. This complexity does not only limit understanding, but also acceptance of e.g. deep learning methods. In recent years, explainable AI (XAI) has been proposed as a remedy. However, this research is rarely supported by publications on explanations from social sciences. We suggest a bottom-up approach to explanations for (game) AI, by starting from a baseline definition of understandability informed by the concept of limited human working memory. We detail our approach and demonstrate its application to two games from the GVGAI framework. Finally, we discuss our vision of how additional concepts from social sciences can be integrated into our proposed approach and how the results can be generalised.