Biblio
Filters: Keyword is mesh topology [Clear All Filters]
Mesh Based Obfuscation of Analog Circuit Properties. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
.
2019. In this paper, a technique to design analog circuits with enhanced security is described. The proposed key based obfuscation technique uses a mesh topology to obfuscate the physical dimensions and the threshold voltage of the transistor. To mitigate the additional overhead of implementing the obfuscated circuitry, a satisfiability modulo theory (SMT) based algorithm is proposed to auto-determine the sizes of the transistors selected for obfuscation such that only a limited set of key values produce the correct circuit functionality. The proposed algorithm and the obfuscation methodology is implemented on an LC tank voltage-controlled oscillator (VCO). The operating frequency of the VCO is masked with a 24-bit encryption key applied to a 2×6 mesh structure that obfuscates the dimensions of each varactor transistor. The probability of determining the correct key is 5.96×10-8 through brute force attack. The dimensions of the obfuscated transistors determined by the analog satisfiability (aSAT) algorithm result in at least a 15%, 3%, and 13% deviation in, respectively, the effective transistor dimensions, target frequency, and voltage amplitude when an incorrect key is applied to the VCO. In addition, only one key produces the desired frequency and properly sets the overall performance specifications of the VCO. The simulated results indicate that the proposed design methodology, which quickly and accurately determines the transistor sizes for obfuscation, produces the target specifications and provides protection for analog circuits against IP piracy and reverse engineering.
Design and analysis of a mesh-based Adaptive Wireless Network-on Chips Architecture With Irregular Network Routing. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–6.
.
2019. The metallic interface for between core messages expends wealth influence and lesser throughput which are huge in Network-on Chip (NoC) structures. We proposed a remote Network-on-Chip (NoC) building Wireless Network-on Chip that uses power and imperatives gainful remote handsets to improve higherenergy and throughput by altering channels as indicated by traffic plans. Our proposed computations uses interface use bits of knowledge to redispensreal platforms, and a vitality funds of 29-35%. Wireless channels and a token sharing arrangement to totally use the remote information transmission successfully. Remote/electrical topological with results demonstrates a through-put advancement of 69%, a speedup between 1.7-2.9X on real platform, and an power savings of 25-38%.
Hardware Security Threats Against Bluetooth Mesh Networks. 2018 IEEE Conference on Communications and Network Security (CNS). :1–9.
.
2018. Because major smartphone platforms are equipped with Bluetooth Low Energy (BLE) capabilities, more and more smart devices have adopted BLE technologies to communicate with smartphones. In order to support the mesh topology in BLE networks, several proposals have been designed. Among them, the Bluetooth Special Interest Group (SIG) recently released a specification for Bluetooth mesh networks based upon BLE technology. This paper focuses on this standard solution and analyses its security protocol with hardware security in mind. As it is expected that internet of things (IoT) devices will be deployed everywhere, the risk of physical attacks must be assessed. First, we provide a comprehensive survey of the security features involved in Bluetooth mesh. Then, we introduce some physical attacks identified as serious threats for the IoT and discuss their relevance in the case of Bluetooth mesh networks. Finally, we briefly discuss possible countermeasures to reach a secure implementation.