Biblio
Filters: Keyword is 6LoWPAN networks [Clear All Filters]
Simulating RPL Attacks in 6lowpan for Detection Purposes. 2020 13th International Conference on Communications (COMM). :239–245.
.
2020. The Internet of Things (IoT) integrates the Internet and electronic devices belonging to different domains, such as smart home automation, industrial processes, military applications, health, and environmental monitoring. Usually, IoT devices have limited resources and Low Power and Lossy Networks (LLNs) are being used to interconnect such devices. Routing Protocol for Low-Power and Lossy Networks (RPL) is one of the preferred routing protocols for this type of network, since it was specially developed for LLNs, also known as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN). In this paper the most well-known routing attacks against 6LoWPAN networks were studied and implemented through simulation, conducting a behavioral analysis of network components (resources, topology, and data traffic) under attack condition. In order to achieve a better understanding on how attacks in 6LoWPAN work, we first conducted a study on 6LoWPAN networks and RPL protocol functioning. Furthermore, we also studied a series of well-known routing attacks against this type of Wireless Sensor Networks and these attacks were then simulated using Cooja simulator provided by Contiki operating system. The results obtained after the simulations are discussed along with other previous researches. This analysis may be of real interest when it comes to identify indicators of compromise for each type of attack and appropriate countermeasures for prevention and detection of these attacks.
Attribute Based Trust Evaluation for Secure RPL Protocol in IoT Environment. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–7.
.
2019. Internet of Things (IoT) is an advanced automation technology and analytics systems which connected physical objects that have access through the Internet and have their unique flexibility and an ability to be suitable for any environment. There are some critical applications like smart health care system, in which the data collection, sharing and routing through IoT has to be handled in sensitive way. The IPv6 Routing Protocol for LL(Low-power and Lossy) networks (RPL) is the routing protocols to ensure reliable data transfer in 6LOWPAN networks. However, RPL is vulnerable to number of security attacks which creates a major impact on energy consumption and memory requirements which is not suitable for energy constraint networks like IoT. This requires secured RPL protocol to be used for critical data transfer. This paper introduces a novel approach of combining a lightweight LBS (Location Based Service) authentication and Attribute Based Trust Evaluation (ABTE). The algorithm has been implemented for smart health care system and analyzed how its perform in the RPL protocol for IoT constrained environments.
A software-defined networking framework for IoT based on 6LoWPAN. 2018 Wireless Telecommunications Symposium (WTS). :1–7.
.
2018. The software defined networking framework facilitates flexible and reliable internet of things networks by moving the network intelligence to a centralized location while enabling low power wireless network in the edge. In this paper, we present SD-WSN6Lo, a novel software-defined wireless management solution for 6LoWPAN networks that aims to reduce the management complexity in WSN's. As an example of the technique, a simulation of controlling the power consumption of sensor nodes is presented. The results demonstrate improved energy consumption of approximately 15% on average per node compared to the baseline condition.