Biblio
Individualization of anonymous identities using artificial intelligence - enables innovative human-computer interaction through the personalization of communication which is, at the same time, individual and anonymous. This paper presents possible approach for individualization of anonymous identities in real time. It uses computer vision and artificial intelligence to automatically detect and recognize person's age group, gender, human body measures, proportions and other specific personal characteristics. Collected data constitutes the so-called person's biometric footprint and are linked to a unique (but still anonymous) identity that is recorded in the computer system, along with other information that make up the profile of the person. Identity anonymization can be achieved by appropriate asymmetric encryption of the biometric footprint (with no additional personal information being stored) and integrity can be ensured using blockchain technology. Data collected in this manner is GDPR compliant.
Internet-of-Things (IoT) is a resource-constrained network with machines low on power, processing and memory capabilities. Resource constraints in IoT impact the adoption of protocols for design and validation of unique identity (ID) for every machine. Malicious machines spoof ID to pose as administrative machines and program their neighbour systems in the network with malware. The cycle of ID spoofing and infecting the IP-enabled devices with malware creates an entire network popularly termed as the Botnet. In this paper, we study 6LoWPAN and ZigBee for DDoS and ID spoofing vulnerabilities. We propose a design for generation and validation of ID on such systems called Pseudo Random Identity Generator (PRIG). We compare the performance of PRIG-adapted 6LoWPAN with 6LoWPAN in a simulated personal area network (PAN) model under DDoS stress and demonstrate a 93% reduction in ID validation time as well as an improvement of 67% in overall throughput.