Visible to the public Biblio

Filters: Keyword is voltage 220.0 V  [Clear All Filters]
2020-08-03
Si, Wen-Rong, Huang, Xing-De, Xin, Zi, Lu, Bing-Bing, Bao, Hai-Long, Xu, Peng, Li, Jun-Hao.  2019.  Research on a General Fast Analysis Algorithm Model for PD Acoustic Detection System: Pattern Identification with Phase Compensation. 2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :288–292.
At present, the acoustic emission (AE) method has the advantages of live measurement and easy fault location, so it is very suitable for insulation defect detection of power equipments such as GIS, etc. While the conventional AE detection system or instruments always can't give a right discrimination result, because them always work based on the reference voltage or phase information from an auxiliary 220V voltage signal source rather than the operation high voltage (HV) with the real phase information corresponding to the detected AE pulsed signals. So there is a random phase difference between the reference phase and operation phase. The discharge fingerprint formed by the detected AE pulsed signals with reference phase using the same processing process is compared to the discharge fingerprint database formed in the HV laboratory with the real phase information, therefore, the system may not be able to discriminate the discharge mode of the field measured data from GIS in substation operation. In this paper, in order to design and develop a general fast analysis algorithm model for PD acoustic detection system to make an assistant diagnosis, the pattern identification with phase compensation was designed and applied. The results show that the method is effective and useful to deatl with AE signals meased in operation situation.
2019-01-16
Azhagumurgan, R., Sivaraman, K., Ramachandran, S. S., Yuvaraj, R., Veeraraghavan, A. K..  2018.  Design and Development of Acoustic Power Transfer Using Infrasonic Sound. 2018 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). :43–46.
Wireless transmission of power has been in research for over a century. Our project aims at transmitting electric power over a distance of room. Various methods using microwaves, lasers, inductive coupling, capacitive coupling and acoustic medium have been used. In our project, we are majorly focusing on acoustic method of transferring power. Previous attempts of transferring power using acoustic methods have employed the usage of ultrasonic sound. In our project, we are using infrasonic sound as a medium to transfer electrical power. For this purpose, we are using suitable transducers and converters to transmit electric power from the 220V AC power supply to a load over a considerable distance. This technology can be used to wirelessly charge various devices more effectively.