Visible to the public Biblio

Filters: Keyword is acoustic propagation  [Clear All Filters]
2022-12-07
Yan, Huang, Zhu, Hanhao, Cui, Zhiqiang, Chai, Zhigang, Wang, Qile, Wang, Yize.  2022.  Effect of seamount on low frequency acoustic propagation based on time domain. 2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS). :780—783.
From the perspective of time domain, the propagation characteristics of sound waves in seawater can be seen more intuitively. In order to study the influence and characteristics of seamount on low frequency acoustic propagation, the research of this paper used the Finite Element Method (FEM) based on time domain to set up a full-waveguide low-frequency acoustic propagation simulation model, and discussed the influencing laws about acoustic propagation on seamount. The simulation results show that Seamounts can hinder the propagation of sound waves, weaken the energy of sound waves. The topographic changes of seamounts can cause the coupling and transformation of acoustic signals during the propagation which can stimulate the seabed interface wave.
2019-01-16
Schneider, T., Schmidt, H..  2018.  NETSIM: A Realtime Virtual Ocean Hardware-in-the-loop Acoustic Modem Network Simulator. 2018 Fourth Underwater Communications and Networking Conference (UComms). :1–5.
This paper presents netsim, a combined software/hardware system for performing realtime realistic operation of autonomous underwater vehicles (AUVs) with acoustic modem telemetry in a virtual ocean environment. The design of the system is flexible to the choice of physical link hardware, allowing for the system to be tested against existing and new modems. Additionally, the virtual ocean channel simulator is designed to perform in real time by coupling less frequent asynchronous queries to high-fidelity models of the ocean environment and acoustic propagation with frequent pertubation-based updates for the exact position of the simulated AUVs. The results demonstrate the performance of this system using the WHOI Micro-Modem 2 hardware in the virtual ocean environment of the Arctic Beaufort Sea around 73 degrees latitude. The acoustic environment in this area has changed dramatically in recent years due to the changing climate.
Kimmich, J. M., Schlesinger, A., Tschaikner, M., Ochmann, M., Frank, S..  2018.  Acoustical Analysis of Coupled Rooms Applied to the Deutsche Oper Berlin. 2018 Joint Conference - Acoustics. :1–9.
The aim of the project SIMOPERA is to simulate and optimize the acoustics in large and complex rooms, with special focus on the Deutsche Oper Berlin as an example of application. Firstly, characteristic subspaces of the opera are considered such as the orchestra pit, the stage and the auditorium. Special attention is paid to the orchestra pit, where high sound pressure levels can occur, leading to noise related risks for the musicians. However, lowering the sound pressure level in the orchestra pit should not violate other objectives as the propagation of sound into the auditorium, the balance between the stage performers and the orchestra across the hall, and the mutual audibility between performers and orchestra members. For that reason, a hybrid simulation method consisting of the wave-based Finite Element Method (FEM) and the Boundary Element Method (BEM) for low frequencies and geometrical methods like the mirror source method and ray tracing for higher frequencies is developed in order to determine the relevant room acoustic quantities such as impulse response functions, reverberation time, clarity, center time etc. Measurements in the opera will continuously accompany the numerical calculations. Finally, selected constructive means for reducing the sound level in the orchestra pit will be analyzed.