Visible to the public Biblio

Filters: Keyword is insider attacker  [Clear All Filters]
2021-04-08
Roy, P., Mazumdar, C..  2018.  Modeling of Insider Threat using Enterprise Automaton. 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT). :1—4.
Substantial portions of attacks on the security of enterprises are perpetrated by Insiders having authorized privileges. Thus insider threat and attack detection is an important aspect of Security management. In the published literature, efforts are on to model the insider threats based on the behavioral traits of employees. The psycho-social behaviors are hard to encode in the software systems. Also, in some cases, there are privacy issues involved. In this paper, the human and non-human agents in a system are described in a novel unified model. The enterprise is described as an automaton and its states are classified secure, safe, unsafe and compromised. The insider agents and threats are modeled on the basis of the automaton and the model is validated using a case study.
2019-01-16
Shrestha, P., Shrestha, B., Saxena, N..  2018.  Home Alone: The Insider Threat of Unattended Wearables and A Defense using Audio Proximity. 2018 IEEE Conference on Communications and Network Security (CNS). :1–9.

In this paper, we highlight and study the threat arising from the unattended wearable devices pre-paired with a smartphone over a wireless communication medium. Most users may not lock their wearables due to their small form factor, and may strip themselves off of these devices often, leaving or forgetting them unattended while away from homes (or shared office spaces). An “insider” attacker (potentially a disgruntled friend, roommate, colleague, or even a spouse) can therefore get hold of the wearable, take it near the user's phone (i.e., within radio communication range) at another location (e.g., user's office), and surreptitiously use it across physical barriers for various nefarious purposes, including pulling and learning sensitive information from the phone (such as messages, photos or emails), and pushing sensitive commands to the phone (such as making phone calls, sending text messages and taking pictures). The attacker can then safely restore the wearable, wait for it to be left unattended again and may repeat the process for maximum impact, while the victim remains completely oblivious to the ongoing attack activity. This malicious behavior is in sharp contrast to the threat of stolen wearables where the victim would unpair the wearable as soon as the theft is detected. Considering the severity of this threat, we also respond by building a defense based on audio proximity, which limits the wearable to interface with the phone only when it can pick up on an active audio challenge produced by the phone.