Visible to the public Biblio

Filters: Keyword is in-browser mining  [Clear All Filters]
2021-02-10
Varlioglu, S., Gonen, B., Ozer, M., Bastug, M..  2020.  Is Cryptojacking Dead After Coinhive Shutdown? 2020 3rd International Conference on Information and Computer Technologies (ICICT). :385—389.
Cryptojacking is the exploitation of victims' computer resources to mine for cryptocurrency using malicious scripts. It had become popular after 2017 when attackers started to exploit legal mining scripts, especially Coinhive scripts. Coinhive was actually a legal mining service that provided scripts and servers for in-browser mining activities. Nevertheless, over 10 million web users had been victims every month before the Coinhive shutdown that happened in Mar 2019. This paper explores the new era of the cryptojacking world after Coinhive discontinued its service. We aimed to see whether and how attackers continue cryptojacking, generate new malicious scripts, and developed new methods. We used a capable cryptojacking detector named CMTracker that proposed by Hong et al. in 2018. We automatically and manually examined 2770 websites that had been detected by CMTracker before the Coinhive shutdown. The results revealed that 99% of sites no longer continue cryptojacking. 1% of websites still run 8 unique mining scripts. By tracking these mining scripts, we detected 632 unique cryptojacking websites. Moreover, open-source investigations (OSINT) demonstrated that attackers still use the same methods. Therefore, we listed the typical patterns of cryptojacking. We concluded that cryptojacking is not dead after the Coinhive shutdown. It is still alive, but not as attractive as it used to be.
2019-01-16
Dao, Ha, Mazel, Johan, Fukuda, Kensuke.  2018.  Understanding Abusive Web Resources: Characteristics and Counter-measures of Malicious Web Resources and Cryptocurrency Mining. Proceedings of the Asian Internet Engineering Conference. :54–61.
Web security is a big concern in the current Internet; users may visit websites that automatically download malicious codes for leaking user's privacy information, or even mildly their web browser may help for someone's cryptomining. In this paper, we analyze abusive web resources (i.e. malicious resources and cryptomining) crawled from the Alexa Top 150,000 sites. We highlight the abusive web resources on Alexa ranking, TLD usage, website geolocation, and domain lifetime. Our results show that abusive resources are spread in the Alexa ranking, websites particularly generic Top Level Domain (TLD) and their recently registered domains. In addition, websites with malicious resources are mainly located in China while cryptomining is located in USA. We further evaluate possible counter-measures against abusive web resources. We observe that ad or privacy block lists are ineffective to block against malicious resources while coin-blocking lists are powerful enough to mitigate in-browser cryptomining. Our observations shed light on a little studied, yet important, aspect of abusive resources, and can help increase user awareness about the malicious resources and drive-by mining on web browsers.