Visible to the public Biblio

Filters: Keyword is direction-of-arrival estimation  [Clear All Filters]
2022-08-12
Zhu, Zhen, Chi, Cheng, Zhang, Chunhua.  2021.  Spatial-Resampling Wideband Compressive Beamforming. OCEANS 2021: San Diego – Porto. :1—4.
Compressive beamforming has been successfully applied to the estimation of the direction of arrival (DOA) of array signals, and has higher angular resolution than traditional high-resolution beamforming methods. However, most of the existing compressive beamforming methods are based on narrow signal models. Wideband signal processing using these existing compressive beamforming methods is to divide the frequency band into several narrow-bands and add up the beamforming results of each narrow-band. However, for sonar application, signals usually consist of continuous spectrum and line spectrum, and the line spectrum is usually more than 10dB higher than the continuous spectrum. Due to the large difference of signal-to-noise ratio (SNR) of each narrow-band, different regularization parameters should be used, otherwise it is difficult to get an ideal result, which makes compressive beamforming highly complicated. In this paper, a compressive beamforming method based on spatial resampling for uniform linear arrays is proposed. The signals are converted into narrow-band signals by spatial resampling technique, and compressive beamforming is then performed to estimate the DOA of the sound source. Experimental results show the superiority of the proposed method, which avoids the problem of using different parameters in the existing compressive beamforming methods, and the resolution is comparable to the existing methods using different parameters for wideband models. The spatial-resampling compressive beamforming has a better robustness when the regularization parameter is fixed, and exhibits lower levels of background interference than the existing methods.
2021-11-29
McKenzie, Thomas, Schlecht, Sebastian J., Pulkki, Ville.  2021.  Acoustic Analysis and Dataset of Transitions Between Coupled Rooms. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :481–485.
The measurement of room acoustics plays a wide role in audio research, from physical acoustics modelling and virtual reality applications to speech enhancement. While vast literature exists on position-dependent room acoustics and coupling of rooms, little has explored the transition from one room to its neighbour. This paper presents the measurement and analysis of a dataset of spatial room impulse responses for the transition between four coupled room pairs. Each transition consists of 101 impulse responses recorded using a fourth-order spherical microphone array in 5 cm intervals, both with and without a continuous line-of-sight between the source and microphone. A numerical analysis of the room transitions is then presented, including direct-to-reverberant ratio and direction of arrival estimations, along with potential applications and uses of the dataset.
2020-08-03
Dai, Haipeng, Liu, Alex X., Li, Zeshui, Wang, Wei, Zhang, Fengmin, Dong, Chao.  2019.  Recognizing Driver Talking Direction in Running Vehicles with a Smartphone. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :10–18.
This paper addresses the fundamental problem of identifying driver talking directions using a single smartphone, which can help drivers by warning distraction of having conversations with passengers in a vehicle and enable safety enhancement. The basic idea of our system is to perform talking status and direction identification using two microphones on a smartphone. We first use the sound recorded by the two microphones to identify whether the driver is talking or not. If yes, we then extract the so-called channel fingerprint from the speech signal and classify it into one of three typical driver talking directions, namely, front, right and back, using a trained model obtained in advance. The key novelty of our scheme is the proposition of channel fingerprint which leverages the heavy multipath effects in the harsh in-vehicle environment and cancels the variability of human voice, both of which combine to invalidate traditional TDoA, DoA and fingerprint based sound source localization approaches. We conducted extensive experiments using two kinds of phones and two vehicles for four phone placements in three representative scenarios, and collected 23 hours voice data from 20 participants. The results show that our system can achieve 95.0% classification accuracy on average.
2019-01-21
Thoen, B., Wielandt, S., Strycker, L. De.  2018.  Fingerprinting Method for Acoustic Localization Using Low-Profile Microphone Arrays. 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN). :1–7.

Indoor localization of unknown acoustic events with MEMS microphone arrays have a huge potential in applications like home assisted living and surveillance. This article presents an Angle of Arrival (AoA) fingerprinting method for use in Wireless Acoustic Sensor Networks (WASNs) with low-profile microphone arrays. In a first research phase, acoustic measurements are performed in an anechoic room to evaluate two computationally efficient time domain delay-based AoA algorithms: one based on dot product calculations and another based on dot products with a PHAse Transform (PHAT). The evaluation of the algorithms is conducted with two sound events: white noise and a female voice. The algorithms are able to calculate the AoA with Root Mean Square Errors (RMSEs) of 3.5° for white noise and 9.8° to 16° for female vocal sounds. In the second research phase, an AoA fingerprinting algorithm is developed for acoustic event localization. The proposed solution is experimentally verified in a room of 4.25 m by 9.20 m with 4 acoustic sensor nodes. Acoustic fingerprints of white noise, recorded along a predefined grid in the room, are used to localize white noise and vocal sounds. The localization errors are evaluated using one node at a time, resulting in mean localization errors between 0.65 m and 0.98 m for white noise and between 1.18 m and 1.52 m for vocal sounds.