Visible to the public Biblio

Filters: Keyword is cyber-physical  [Clear All Filters]
2023-05-26
Coshatt, Stephen J., Li, Qi, Yang, Bowen, Wu, Shushan, Shrivastava, Darpan, Ye, Jin, Song, WenZhan, Zahiri, Feraidoon.  2022.  Design of Cyber-Physical Security Testbed for Multi-Stage Manufacturing System. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :1978—1983.
As cyber-physical systems are becoming more wide spread, it is imperative to secure these systems. In the real world these systems produce large amounts of data. However, it is generally impractical to test security techniques on operational cyber-physical systems. Thus, there exists a need to have realistic systems and data for testing security of cyber-physical systems [1]. This is often done in testbeds and cyber ranges. Most cyber ranges and testbeds focus on traditional network systems and few incorporate cyber-physical components. When they do, the cyber-physical components are often simulated. In the systems that incorporate cyber-physical components, generally only the network data is analyzed for attack detection and diagnosis. While there is some study in using physical signals to detect and diagnosis attacks, this data is not incorporated into current testbeds and cyber ranges. This study surveys currents testbeds and cyber ranges and demonstrates a prototype testbed that includes cyber-physical components and sensor data in addition to traditional cyber data monitoring.
2021-05-25
Dodson, Michael, Beresford, Alastair R., Richardson, Alexander, Clarke, Jessica, Watson, Robert N. M..  2020.  CHERI Macaroons: Efficient, host-based access control for cyber-physical systems. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :688–693.
Cyber-Physical Systems (CPS) often rely on network boundary defence as a primary means of access control; therefore, the compromise of one device threatens the security of all devices within the boundary. Resource and real-time constraints, tight hardware/software coupling, and decades-long service lifetimes complicate efforts for more robust, host-based access control mechanisms. Distributed capability systems provide opportunities for restoring access control to resource-owning devices; however, such a protection model requires a capability-based architecture for CPS devices as well as task compartmentalisation to be effective.This paper demonstrates hardware enforcement of network bearer tokens using an efficient translation between CHERI (Capability Hardware Enhanced RISC Instructions) architectural capabilities and Macaroon network tokens. While this method appears to generalise to any network-based access control problem, we specifically consider CPS, as our method is well-suited for controlling resources in the physical domain. We demonstrate the method in a distributed robotics application and in a hierarchical industrial control application, and discuss our plans to evaluate and extend the method.
2020-10-05
Lago, Loris Dal, Ferrante, Orlando, Passerone, Roberto, Ferrari, Alberto.  2018.  Dependability Assessment of SOA-Based CPS With Contracts and Model-Based Fault Injection. IEEE Transactions on Industrial Informatics. 14:360—369.

Engineering complex distributed systems is challenging. Recent solutions for the development of cyber-physical systems (CPS) in industry tend to rely on architectural designs based on service orientation, where the constituent components are deployed according to their service behavior and are to be understood as loosely coupled and mostly independent. In this paper, we develop a workflow that combines contract-based and CPS model-based specifications with service orientation, and analyze the resulting model using fault injection to assess the dependability of the systems. Compositionality principles based on the contract specification help us to make the analysis practical. The presented techniques are evaluated on two case studies.

2020-02-10
Niddodi, Chaitra, Lin, Shanny, Mohan, Sibin, Zhu, Hao.  2019.  Secure Integration of Electric Vehicles with the Power Grid. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
This paper focuses on the secure integration of distributed energy resources (DERs), especially pluggable electric vehicles (EVs), with the power grid. We consider the vehicle-to-grid (V2G) system where EVs are connected to the power grid through an `aggregator' In this paper, we propose a novel Cyber-Physical Anomaly Detection Engine that monitors system behavior and detects anomalies almost instantaneously (worst case inspection time for a packet is 0.165 seconds1). This detection engine ensures that the critical power grid component (viz., aggregator) remains secure by monitoring (a) cyber messages for various state changes and data constraints along with (b) power data on the V2G cyber network using power measurements from sensors on the physical/power distribution network. Since the V2G system is time-sensitive, the anomaly detection engine also monitors the timing requirements of the protocol messages to enhance the safety of the aggregator. To the best of our knowledge, this is the first piece of work that combines (a) the EV charging/discharging protocols, the (b) cyber network and (c) power measurements from physical network to detect intrusions in the EV to power grid system.1Minimum latency on V2G network is 2 seconds.
2017-12-04
Athinaiou, M..  2017.  Cyber security risk management for health-based critical infrastructures. 2017 11th International Conference on Research Challenges in Information Science (RCIS). :402–407.

This brief paper reports on an early stage ongoing PhD project in the field of cyber-physical security in health care critical infrastructures. The research overall aims to develop a methodology that will increase the ability of secure recovery of health critical infrastructures. This ambitious or reckless attempt, as it is currently at an early stage, in this paper, tries to answer why cyber-physical security for health care infrastructures is important and of scientific interest. An initial PhD project methodology and expected outcomes are also discussed. The report concludes with challenges that emerge and possible future directions.

2015-05-01
Albasrawi, M.N., Jarus, N., Joshi, K.A., Sarvestani, S.S..  2014.  Analysis of Reliability and Resilience for Smart Grids. Computer Software and Applications Conference (COMPSAC), 2014 IEEE 38th Annual. :529-534.

Smart grids, where cyber infrastructure is used to make power distribution more dependable and efficient, are prime examples of modern infrastructure systems. The cyber infrastructure provides monitoring and decision support intended to increase the dependability and efficiency of the system. This comes at the cost of vulnerability to accidental failures and malicious attacks, due to the greater extent of virtual and physical interconnection. Any failure can propagate more quickly and extensively, and as such, the net result could be lowered reliability. In this paper, we describe metrics for assessment of two phases of smart grid operation: the duration before a failure occurs, and the recovery phase after an inevitable failure. The former is characterized by reliability, which we determine based on information about cascading failures. The latter is quantified using resilience, which can in turn facilitate comparison of recovery strategies. We illustrate the application of these metrics to a smart grid based on the IEEE 9-bus test system.