Biblio
We introduce the strictly in-order core (SIC), a timing-predictable pipelined processor core. SIC is provably timing compositional and free of timing anomalies. This enables precise and efficient worst-case execution time (WCET) and multi-core timing analysis. SIC's key underlying property is the monotonicity of its transition relation w.r.t. a natural partial order on its microarchitectural states. This monotonicity is achieved by carefully eliminating some of the dependencies between consecutive instructions from a standard in-order pipeline design. SIC preserves most of the benefits of pipelining: it is only about 6-7% slower than a conventional pipelined processor. Its timing predictability enables orders-of-magnitude faster WCET and multi-core timing analysis than conventional designs.
Successive interference cancellation (SIC) receiver is adopted by power domain non-orthogonal multiple access (NOMA) at the receiver side as the baseline receiver scheme taking the forthcoming expected mobile device evolution into account. Development technologies and advanced techniques are boldly being considered in order to achieve power saving in many networks, to reach sustainability and reliability in communication due to envisioned huge amount of data delivery. In this paper, we propose a novel scheme of NOMA-SIC for the sake of balancing the trade-off between system performance and complexity. In the proposed scheme, each SIC level is comprised by a matching filter (MF), a MF detector and a regenerator. In simulations, the proposed scheme demonstrates the best performance on power saving, of which energy efficiency increases with an increase in the number of NOMA device pairs.