Biblio
How does information regarding an adversary's intentions affect optimal system design? This paper addresses this question in the context of graphical coordination games where an adversary can indirectly influence the behavior of agents by modifying their payoffs. We study a situation in which a system operator must select a graph topology in anticipation of the action of an unknown adversary. The designer can limit her worst-case losses by playing a security strategy, effectively planning for an adversary which intends maximum harm. However, fine-grained information regarding the adversary's intention may help the system operator to fine-tune the defenses and obtain better system performance. In a simple model of adversarial behavior, this paper asks how much a system operator can gain by fine-tuning a defense for known adversarial intent. We find that if the adversary is weak, a security strategy is approximately optimal for any adversary type; however, for moderately-strong adversaries, security strategies are far from optimal.
As modern societies become more dependent on IT services, the potential impact both of adversarial cyberattacks and non-adversarial service management mistakes grows. This calls for better cyber situational awareness-decision-makers need to know what is going on. The main focus of this paper is to examine the information elements that need to be collected and included in a common operational picture in order for stakeholders to acquire cyber situational awareness. This problem is addressed through a survey conducted among the participants of a national information assurance exercise conducted in Sweden. Most participants were government officials and employees of commercial companies that operate critical infrastructure. The results give insight into information elements that are perceived as useful, that can be contributed to and required from other organizations, which roles and stakeholders would benefit from certain information, and how the organizations work with creating cyber common operational pictures today. Among findings, it is noteworthy that adversarial behavior is not perceived as interesting, and that the respondents in general focus solely on their own organization.
Over a decade, intelligent and persistent forms of cyber threats have been damaging to the organizations' cyber assets and missions. In this paper, we analyze current cyber kill chain models that explain the adversarial behavior to perform advanced persistent threat (APT) attacks, and propose a cyber kill chain model that can be used in view of cyber situation awareness. Based on the proposed cyber kill chain model, we propose a threat taxonomy that classifies attack tactics and techniques for each attack phase using CAPEC, ATT&CK that classify the attack tactics, techniques, and procedures (TTPs) proposed by MITRE. We also implement a cyber common operational picture (CyCOP) to recognize the situation of cyberspace. The threat situation can be represented on the CyCOP by applying cyber kill chain based threat taxonomy.