Visible to the public Biblio

Filters: Keyword is frequency shift keying  [Clear All Filters]
2022-12-01
Oh, Mi-Kyung, Lee, Sangjae, Kang, Yousung.  2021.  Wi-SUN Device Authentication using Physical Layer Fingerprint. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :160–162.
This paper aims to identify Wi-SUN devices using physical layer fingerprint. We first extract physical layer features based on the received Wi-SUN signals, especially focusing on device-specific clock skew and frequency deviation in FSK modulation. Then, these physical layer fingerprints are used to train a machine learning-based classifier and the resulting classifier finally identifies the authorized Wi-SUN devices. Preliminary experiments on Wi-SUN certified chips show that the authenticator with the proposed physical layer fingerprints can distinguish Wi-SUN devices with 100 % accuracy. Since no additional computational complexity for authentication is involved on the device side, our approach can be applied to any Wi-SUN based IoT devices with security requirements.
2020-12-28
Khatod, V., Manolova, A..  2020.  Effects of Man in the Middle (MITM) Attack on Bit Error Rate of Bluetooth System. 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT NCON). :153—157.
The ad-hoc network formed by Bluetooth works on radio frequency links. The security aspect of Bluetooth has to be handled more carefully. The radio frequency waves have a characteristic that the waves can pierce the obstructions in the communication path, get rid of the requirement of line of sight between the communicating devices. We propose a software model of man-in-the-middle attack along with unauthorized and authorized transmitter and receiver. Advanced White Gaussian Noise channel is simulated in the designed architecture. The transmitter uses Gaussian Frequency Shift Keying (GFSK) modulation like in Bluetooth. The receiver uses GFSK demodulation. In order to validate the performance of the designed system, bit error rate (BER) measurements are taken with respect to different time intervals. We found that BER drops roughly 18% if hopping duration of 150 seconds is chosen. We propose that a Bluetooth system with hopping rate of 0.006 Hz is used instead of 10Hz.
2019-03-15
Yazicigil, R. T., Nadeau, P., Richman, D., Juvekar, C., Vaidya, K., Chandrakasan, A. P..  2018.  Ultra-Fast Bit-Level Frequency-Hopping Transmitter for Securing Low-Power Wireless Devices. 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). :176-179.

Current BLE transmitters are susceptible to selective jamming due to long dwell times in a channel. To mitigate these attacks, we propose physical-layer security through an ultra-fast bit-level frequency-hopping (FH) scheme by exploiting the frequency agility of bulk acoustic wave resonators (BAW). Here we demonstrate the first integrated bit-level FH transmitter (TX) that hops at 1$μ$s period and uses data-driven random dynamic channel selection to enable secure wireless communications with additional data encryption. This system consists of a time-interleaved BAW-based TX implemented in 65nm CMOS technology with 80MHz coverage in the 2.4GHz ISM band and a measured power consumption of 10.9mW from 1.1V supply.

2019-01-31
Bak, D., Mazurek, P..  2018.  Air-Gap Data Transmission Using Screen Brightness Modulation. 2018 International Interdisciplinary PhD Workshop (IIPhDW). :147–150.

Air-gap data is important for the security of computer systems. The injection of the computer virus is limited but possible, however data communication channel is necessary for the transmission of stolen data. This paper considers BFSK digital modulation applied to brightness changes of screen for unidirectional transmission of valuable data. Experimental validation and limitations of the proposed technique are provided.