Visible to the public Biblio

Filters: Keyword is fraud de-anonymization  [Clear All Filters]
2019-02-18
Hernandez, Nestor, Rahman, Mizanur, Recabarren, Ruben, Carbunar, Bogdan.  2018.  Fraud De-Anonymization for Fun and Profit. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :115–130.
The persistence of search rank fraud in online, peer-opinion systems, made possible by crowdsourcing sites and specialized fraud workers, shows that the current approach of detecting and filtering fraud is inefficient. We introduce a fraud de-anonymization approach to disincentivize search rank fraud: attribute user accounts flagged by fraud detection algorithms in online peer-opinion systems, to the human workers in crowdsourcing sites, who control them. We model fraud de-anonymization as a maximum likelihood estimation problem, and introduce UODA, an unconstrained optimization solution. We develop a graph based deep learning approach to predict ownership of account pairs by the same fraudster and use it to build discriminative fraud de-anonymization (DDA) and pseudonymous fraudster discovery algorithms (PFD). To address the lack of ground truth fraud data and its pernicious impacts on online systems that employ fraud detection, we propose the first cheating-resistant fraud de-anonymization validation protocol, that transforms human fraud workers into ground truth, performance evaluation oracles. In a user study with 16 human fraud workers, UODA achieved a precision of 91%. On ground truth data that we collected starting from other 23 fraud workers, our co-ownership predictor significantly outperformed a state-of-the-art competitor, and enabled DDA and PFD to discover tens of new fraud workers, and attribute thousands of suspicious user accounts to existing and newly discovered fraudsters.
2019-01-31
Rahman, Mizanur, Hernandez, Nestor, Carbunar, Bogdan, Chau, Duen Horng.  2018.  Search Rank Fraud De-Anonymization in Online Systems. Proceedings of the 29th on Hypertext and Social Media. :174–182.

We introduce the fraud de-anonymization problem, that goes beyond fraud detection, to unmask the human masterminds responsible for posting search rank fraud in online systems. We collect and study search rank fraud data from Upwork, and survey the capabilities and behaviors of 58 search rank fraudsters recruited from 6 crowdsourcing sites. We propose Dolos, a fraud de-anonymization system that leverages traits and behaviors extracted from these studies, to attribute detected fraud to crowdsourcing site fraudsters, thus to real identities and bank accounts. We introduce MCDense, a min-cut dense component detection algorithm to uncover groups of user accounts controlled by different fraudsters, and leverage stylometry and deep learning to attribute them to crowdsourcing site profiles. Dolos correctly identified the owners of 95% of fraudster-controlled communities, and uncovered fraudsters who promoted as many as 97.5% of fraud apps we collected from Google Play. When evaluated on 13,087 apps (820,760 reviews), which we monitored over more than 6 months, Dolos identified 1,056 apps with suspicious reviewer groups. We report orthogonal evidence of their fraud, including fraud duplicates and fraud re-posts.