Visible to the public Biblio

Filters: Keyword is VC  [Clear All Filters]
2022-09-30
Naik, Nitin, Jenkins, Paul.  2021.  Sovrin Network for Decentralized Digital Identity: Analysing a Self-Sovereign Identity System Based on Distributed Ledger Technology. 2021 IEEE International Symposium on Systems Engineering (ISSE). :1–7.
Digital identity is the key to the evolving digital society and economy. Since the inception of digital identity, numerous Identity Management (IDM) systems have been developed to manage digital identity depending on the requirements of the individual and that of organisations. This evolution of IDM systems has provided an incremental process leading to the granting of control of identity ownership and personal data to its user, thus producing an IDM which is more user-centric with enhanced security and privacy. A recently promising IDM known as Self-Sovereign Identity (SSI) has the potential to provide this sovereignty to the identity owner. The Sovrin Network is an emerging SSI service utility enabling self-sovereign identity for all, therefore, its assessment has to be carefully considered with reference to its architecture, working, functionality, strengths and limitations. This paper presents an analysis of the Sovrin Network based on aforementioned features. Firstly, it presents the architecture and components of the Sovrin Network. Secondly, it illustrates the working of the Sovrin Network and performs a detailed analysis of its various functionalities and metrics. Finally, based on the detailed analysis, it presents the strengths and limitations of the Sovrin Network.
2019-01-31
Khodaei, Mohammad, Noroozi, Hamid, Papadimitratos, Panos.  2018.  Privacy Preservation Through Uniformity. Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :279–280.

Inter-vehicle communications disclose rich information about vehicle whereabouts. Pseudonymous authentication secures communication while enhancing user privacy thanks to a set of anonymized certificates, termed pseudonyms. Vehicles switch the pseudonyms (and the corresponding private key) frequently; we term this pseudonym transition process. However, exactly because vehicles can in principle change their pseudonyms asynchronously, an adversary that eavesdrops (pseudonymously) signed messages, could link pseudonyms based on the times of pseudonym transition processes. In this poster, we show how one can link pseudonyms of a given vehicle by simply looking at the timing information of pseudonym transition processes. We also propose "mix-zone everywhere": time-aligned pseudonyms are issued for all vehicles to facilitate synchronous pseudonym update; as a result, all vehicles update their pseudonyms simultaneously, thus achieving higher user privacy protection.